Improving Brain Recovery Through Glycoengineering
通过糖工程改善大脑恢复
基本信息
- 批准号:10666616
- 负责人:
- 金额:$ 48.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AdhesionsAffinityAnimal ModelAnimalsApoptosisBehavior assessmentBehavioralBiochemicalBiologicalBiological ProcessBiologyBrainBrain InjuriesCadherinsCarbohydratesCell AdhesionCell CommunicationCell surfaceCellsCellular biologyCentral Nervous System DiseasesChemical StructureChemicalsChemistryComplexDevelopmentDoseElectrophysiology (science)EngineeringEventExtracellular MatrixFoundationsGenerationsGlycoconjugatesGlycoengineeringGoldHealthcareHeart ArrestHumanImplantIn VitroInterceptIschemiaKineticsLeadMalignant NeoplasmsMass Spectrum AnalysisMediatorMetabolicMetabolismMethodologyModelingMonosaccharidesN-acetylmannosamineNatureNerve RegenerationNeuritesNeuronal DifferentiationNeuronsNeurophysiology - biologic functionOrganismPathway interactionsPharmaceutical PreparationsPhysiologicalPolysaccharidesPreclinical TestingProteinsRattusRecoveryRecovery of FunctionReportingRodent ModelSafetySialic AcidsSignal TransductionSpatial DistributionStimulusStructure-Activity RelationshipSulfhydryl CompoundsSurfaceSynaptic plasticityTechniquesTestingTherapeuticTimeTissuesTranslationsTransplantationWNT Signaling PathwayWnt proteinsWorkanalogblastomere structurecell motilityclinical applicationclinical translationconventional therapycost effectivenesscovalent bonddesigndrug candidateembryo cellextracellularfunctional groupfunctional improvementglycoproteomicshealingimmune cell infiltrateimprovedin vivoinjuredinjury recoveryinnovationintercellular communicationmigrationnerve stem cellneuralneuroregulationnovelreceptorresponsescaffoldstem cell biologystem cell differentiationstem cell fatestem cell therapytechnology platformtherapeutic candidatetranslational approach
项目摘要
Project Summary
This project is based on recent advances in metabolic glycoengineering (MGE), a technology platform where
non-natural monosaccharides intercept the biosynthetic pathways for cell surface-displayed glycans. As a
result, chemical functionalities not naturally found in carbohydrates are installed in the glycalyx, which can alter
cell adhesion, receptor activity, and downstream events (e.g., apoptosis, differentiation, and motility). In
previous work, we developed the N-acetylmannosamine (ManNAc) analog “Ac5ManNTGc” to install thiol
groups into sialic acids in human embryonic cells and found that – when the cells were grown on a “high affinity”
surface (e.g., gold, which forms coordinate covalent bonds with thiols) – Wnt signaling was upregulated in the
absence of extracellular Wnt proteins and neuronal differentiation was induced. In vivo translation of this
approach, however, was hindered by the requirement for a non-degradable gold scaffold. We recently
overcame this impediment by designing new ManNAc analogs with thiols presented on longer linkers, which
extends this functional group further away from the core monosccharide and increases analog potency.
Critically, the new analogs provide pro-neurogenic activity in the absence of a scaffold thereby simplifying in
vivo translation. This project will explore analog mechanism in hNSCs in Specific Aim 1; this aim will define
how the chemical structure, kinetics, and dose of thiol-modified ManNAc analogs (along with chemically inert
size-matched controls) modulate cellular glycans in Aim 1a; evaluate changes to cell adhesion and motility in
Aim 1b, and evaluate the differentiation of human neural stem cells (hNSCs) in Aim 1c. Next, in Specific Aim
2, we will apply the optimized analog-treatment conditions to improve neural regeneration in a rat cardiac
arrest (CA) model of brain injury by transplanting MGE-modified into injured animals. We will compare hNSCs
treated with our new thiol-modified analogs with appropriate controls on functional recovery after CA by
evaluating survival, adhesion, distribution, and migration of transplanted hNSCs in rat brain. In Specific Aim 3,
we will evaluate biochemical (Wnt signaling and cadherin involvement) and cellular (tissue infiltrating immune
cells) level mechanisms we propose contribute to the healing effects of MGE in brain injury recovery (in Aim
3a). Finally, in Aim 3b we will characterize cell-wide “glycosites” by mass spectrometry and use
glycobioinformatics analyses to identify unknown biochemical mediators of MGE. Specifically, we anticipate
identifying new mediators of the beneficial effects of MGE in the implanted hNSCs as well as trans-acting host
proteins. We hypothesize that thio-analogs modulate hNSC fate through a complex combination of receptor-
specific effects on cell signaling and adhesion providing a pleiotropic suite of healing effects that cannot be
achieved through conventional therapies. Accordingly, our innovative approach opens a new avenue to
improve stem cell therapy with our new thiol-based MGE technique.
项目概要
该项目基于代谢糖工程(MGE)的最新进展,这是一个技术平台,其中
非天然单糖拦截细胞表面展示聚糖的生物合成途径。
结果,碳水化合物中不存在的化学功能被安装在糖萼中,这可以改变
细胞粘附、受体活性和下游事件(例如细胞凋亡、分化和运动)。
在之前的工作中,我们开发了N-乙酰甘露糖胺(ManNAc)类似物“Ac5ManNTGc”来安装硫醇
在人类胚胎细胞中分组为唾液酸,并发现当细胞以“高亲和力”生长时
表面(例如金,与硫醇形成配位共价键)——Wnt 信号传导在
细胞外 Wnt 蛋白的缺失和神经元分化被诱导。
然而,这种方法受到了对不可降解金支架的需求的阻碍。
通过设计新的 ManNAc 类似物,其硫醇存在于较长的连接体上,克服了这一障碍,
将该功能组扩展至远离核心单糖的位置并增加模拟效力。
重要的是,新的类似物在没有支架的情况下提供了促神经发生活性,从而简化了
该项目将在具体目标 1 中探索 hNSC 中的模拟机制;
硫醇修饰的 ManNAc 类似物(以及化学惰性的)的化学结构、动力学和剂量如何
大小匹配的对照)调节目标 1a 中的细胞聚糖;评估细胞粘附和运动的变化
目标 1b,并在目标 1c 中评估人类神经干细胞 (hNSC) 的分化。
2,我们将应用优化的模拟治疗条件来改善大鼠心脏的神经再生
通过将 MGE 修饰移植到受伤动物中来建立脑损伤的逮捕 (CA) 模型 我们将比较 hNSC。
用我们新的硫醇修饰类似物进行治疗,并对 CA 后的功能恢复进行适当的控制
在特定目标 3 中评估移植 hNSC 的存活、粘附、分布和迁移。
我们将评估生化(Wnt 信号传导和钙粘蛋白参与)和细胞(组织浸润免疫)
我们建议在脑损伤恢复中促进 MGE 的愈合作用(在 Aim
最后,在目标 3b 中,我们将通过质谱分析和使用来表征细胞范围的“糖位点”。
具体而言,我们预计将通过糖生物信息学分析来识别未知的 MGE 生化介质。
确定 MGE 在植入的 hNSC 以及反式作用宿主中的有益作用的新介质
我们研究硫代类似物通过受体的复杂组合来调节 hNSC 的命运。
对细胞信号传导和粘附的特定作用提供了一系列无法比拟的多效性治疗效果
因此,我们的创新方法开辟了一条新途径。
利用我们新的基于硫醇的 MGE 技术改善干细胞治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaofeng Jia其他文献
Xiaofeng Jia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaofeng Jia', 18)}}的其他基金
Stem Cell Surface Modification to Promote Nerve Regeneration
干细胞表面修饰促进神经再生
- 批准号:
10543158 - 财政年份:2021
- 资助金额:
$ 48.23万 - 项目类别:
Stem Cell Surface Modification to Promote Nerve Regeneration
干细胞表面修饰促进神经再生
- 批准号:
10326864 - 财政年份:2021
- 资助金额:
$ 48.23万 - 项目类别:
Brain Recovery after Cardiac Arrest with Metabolic Glycoengineered Stem Cells
代谢糖工程干细胞促进心脏骤停后的大脑恢复
- 批准号:
10434716 - 财政年份:2018
- 资助金额:
$ 48.23万 - 项目类别:
Brain Recovery after Cardiac Arrest with Metabolic Glycoengineered Stem Cells
代谢糖工程干细胞促进心脏骤停后的大脑恢复
- 批准号:
10201773 - 财政年份:2018
- 资助金额:
$ 48.23万 - 项目类别:
Brain Recovery after Cardiac Arrest with Metabolic Glycoengineered Stem Cells
代谢糖工程干细胞促进心脏骤停后的大脑恢复
- 批准号:
9791036 - 财政年份:2018
- 资助金额:
$ 48.23万 - 项目类别:
Brain Recovery after Cardiac Arrest with Metabolic Glycoengineered Stem Cells
代谢糖工程干细胞促进心脏骤停后的大脑恢复
- 批准号:
9979983 - 财政年份:2018
- 资助金额:
$ 48.23万 - 项目类别:
Brain Monitoring and Therapeutic Hypothermia after Cardiac Arrest
心脏骤停后的脑部监测和低温治疗
- 批准号:
8831135 - 财政年份:2014
- 资助金额:
$ 48.23万 - 项目类别:
Brain Monitoring and Therapeutic Hypothermia after Cardiac Arrest
心脏骤停后的脑部监测和低温治疗
- 批准号:
9035424 - 财政年份:2014
- 资助金额:
$ 48.23万 - 项目类别:
Brain Monitoring and Therapeutic Hypothermia after Cardiac Arrest
心脏骤停后的脑部监测和低温治疗
- 批准号:
8842190 - 财政年份:2014
- 资助金额:
$ 48.23万 - 项目类别:
Brain Monitoring and Therapeutic Hypothermia after Cardiac Arrest
心脏骤停后的脑部监测和低温治疗
- 批准号:
8481969 - 财政年份:2013
- 资助金额:
$ 48.23万 - 项目类别:
相似国自然基金
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
- 批准号:62302277
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
DNA四面体限域辅助的高亲和力铅笔芯微电极用于早期癌症精准诊断研究
- 批准号:22304062
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
相似海外基金
Roles of N-glycans on neutrophil beta2 integrins in progression of acute lung injury
N-聚糖对中性粒细胞β2整合素在急性肺损伤进展中的作用
- 批准号:
10837431 - 财政年份:2023
- 资助金额:
$ 48.23万 - 项目类别:
Developing non-immunosuppressive immune-based therapeutics for targeted treatment of autoimmune diseases
开发非免疫抑制性免疫疗法来靶向治疗自身免疫性疾病
- 批准号:
10586562 - 财政年份:2023
- 资助金额:
$ 48.23万 - 项目类别:
Role of Selective Autophagy of Focal Adhesion in Intracranial Aneurysm
局部粘连选择性自噬在颅内动脉瘤中的作用
- 批准号:
10586692 - 财政年份:2023
- 资助金额:
$ 48.23万 - 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
- 批准号:
10674894 - 财政年份:2022
- 资助金额:
$ 48.23万 - 项目类别: