3D printed muscle-bone organ implant for treating large injuries
3D打印肌肉骨骼器官植入物用于治疗大面积损伤
基本信息
- 批准号:10393059
- 负责人:
- 金额:$ 41.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-11-19 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAddressAffectAmericanAmputationAreaBehaviorBiodegradationBiologicalBioreactorsBone DevelopmentBone DiseasesBone GrowthBone TissueBone neoplasmsBurn injuryCellsCessation of lifeClinicClinicalCoupledCustomDefectDevelopmentDifferentiation and GrowthDiseaseDistalDrug CarriersEncapsulatedEngineeringEwings sarcomaExternal Intercostal MuscleFemurFibrosisGoalsGrowthGrowth FactorGrowth Factor ReceptorsGrowth and Development functionHealthHumanHydrogelsImpairmentImplantIn VitroIndividualInjectableInjectionsInjuryInkKineticsLeadMalignant NeoplasmsMedicalModelingMovementMusMuscleMuscle CellsMuscle functionMuscular AtrophyMusculoskeletalMusculoskeletal DiseasesMusculoskeletal SystemNatural regenerationOperative Surgical ProceduresOrganOsteoblastsPainPathologicPatientsPerfusionPeriosteumPersonsPopulationPorosityPrintingPropertyRecoveryRegenerative MedicineRegenerative capacityRelaxationResearchSignal TransductionSiteStructureSystemTechnologyTherapeuticTissuesUnited StatesViscosityautomobile accidentbasebioinkbiomaterial compatibilitybioprintingbonebone cellbone epiphysiscell typecontrolled releasedesigndisabilityimmunoregulationimprovedin vivoinfraspinatous muscleinnovationlimb injurymacrophagemimeticsmortalitymuscular structuremusculoskeletal injuryosteogenicosteosarcomaphysically handicappedpressurepreventrecruitsocioeconomicssoft tissuethree dimensional structuretissue regenerationtumorvolumetric muscle loss
项目摘要
PROJECT SUMMARY
In the United States, musculoskeletal diseases such as extremity injuries, burns, and tumors are a leading cause
of disabilities and death, affecting one in two individuals. However, until now, there has been no effective implant
that can replace the structure and function of damaged bone and muscle tissues, likely due to the difficulty of
regulating the sophisticated heterogeneous bone-muscle junction structure. As a result, muscle damage has
been largely ignored during musculoskeletal surgeries, which often results in disconnected tissues and fibrous
tissue formation, leading to temporal or permanent musculoskeletal disability. In fact, in the human
musculoskeletal system, there exists a direct attachment between bone and muscle tissues at a wide area of
bone, forming a “bone-muscle unit.” Based on this structural closeness, the growth and development of bone
and muscle are tightly coupled through growth factor signaling and cellular cross-talk. Therefore, damage to
either bone or muscle can deteriorate health and function of the other tissue type. For this reason, there has
been a strong need for developing an innovative musculoskeletal implant, which can integrate the distinguished
physicochemical properties of hard tissue and soft tissue in a spatially controlled manner.
To address this problem, we aim to design and build the first 3D printed muscle-bone implant, by utilizing state-
of-the-art 3D multimaterial bioprinting that can extrude multiple types of tissue mimetic bioinks in a simultaneous
and continuous manner. We will control the physicochemical properties of bioinks, such as viscosity and porosity,
to provide an optimized artificial niche for the growth and differentiation of each cell type. We will also include
biodegradable drug carriers to supply musculogenic and osteogenic growth factors with controlled release kinetic
behavior, to aid tissue recovery. In addition, we will regulate the parameters for bioprinting, such as pneumatic
pressure, and the injection and photocrosslinking conditions to build a 3D structure. We will then mature the 3D
printed muscle-bone organ implant in a customized bioreactor system by applying compression and relaxation
cycles that mimic musculoskeletal movement in vivo. Finally, we will evaluate the musculoskeletal regeneration
capacity of our 3D printed muscle-bone implant in a mouse volumetric muscle loss and bone defect model. This
research will present the first 3D print muscle-bone tissues with continuous structures ex vivo that can provide a
groundbreaking clinical solution for curing severe musculoskeletal injuries and preventing disabilities in the clinic.
We further expect that our 3D printed muscle-bone tissue platform will be beneficial for understanding
developmental principles and pathological mechanisms of the musculoskeletal system.
项目概要
在美国,四肢受伤、烧伤和肿瘤等肌肉骨骼疾病是导致死亡的主要原因
残疾和死亡,影响了二分之一的人。然而,到目前为止,还没有有效的植入物。
它可以替代受损的骨骼和肌肉组织的结构和功能,这可能是由于修复的难度
调节复杂的异质骨-肌肉连接结构,从而导致肌肉损伤。
在肌肉骨骼手术期间很大程度上被忽视,这通常会导致组织断开和纤维化
事实上,在人类中,会导致暂时性或永久性的肌肉骨骼残疾。
在肌肉骨骼系统中,骨骼和肌肉组织之间在大范围内存在直接附着
骨骼,形成“骨-肌肉单元”。基于这种结构的紧密性,骨骼的生长和发育。
和肌肉通过生长因子信号传导和细胞串扰紧密耦合,因此会造成损害。
骨骼或肌肉都会损害其他组织类型的健康和功能。
强烈需要开发一种创新的肌肉骨骼植入物,它可以整合杰出的
以空间控制的方式检测硬组织和软组织的物理化学特性。
为了解决这个问题,我们的目标是利用状态设计和制造第一个 3D 打印肌肉骨植入物
最先进的 3D 多材料生物打印,可以同时挤出多种类型的组织模拟生物墨水
我们将控制生物墨水的物理化学性质,例如粘度和孔隙率,
为每种细胞类型的生长和分化提供优化的人工生态位。
可生物降解的药物载体,提供具有控制释放动力学的肌肉生成和成骨生长因子
此外,我们将调节生物打印的参数,例如气动。
压力、注射和光交联条件来构建 3D 结构,然后我们将使 3D 成熟。
通过施加压缩和放松,在定制的生物反应器系统中打印肌肉骨器官植入物
最后,我们将评估肌肉骨骼再生。
我们的 3D 打印肌肉骨植入物在小鼠体积肌肉损失和骨缺损模型中的能力。
研究将展示第一个具有连续结构的离体 3D 打印肌肉骨组织,可以提供
用于治疗严重肌肉骨骼损伤和预防临床残疾的突破性临床解决方案。
我们进一步期望我们的 3D 打印肌肉骨骼组织平台将有助于理解
肌肉骨骼系统的发育原理和病理机制。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nanotherapeutic approaches to overcome distinct drug resistance barriers in models of breast cancer.
- DOI:10.1515/nanoph-2021-0142
- 发表时间:2021-09
- 期刊:
- 影响因子:7.5
- 作者:Saha T;Mondal J;Khiste S;Lusic H;Hu ZW;Jayabalan R;Hodgetts KJ;Jang H;Sengupta S;Eunice Lee S;Park Y;Lee LP;Goldman A
- 通讯作者:Goldman A
An inexpensive "do-it-yourself" device for rapid generation of uniform tumor spheroids.
- DOI:10.1016/j.device.2024.100255
- 发表时间:2024-01
- 期刊:
- 影响因子:0
- 作者:Bumseok Namgung;Hongqing Dai;P. Vikraman;Tanmoy Saha;Shiladitya Sengupta;Hae Lin Jang
- 通讯作者:Bumseok Namgung;Hongqing Dai;P. Vikraman;Tanmoy Saha;Shiladitya Sengupta;Hae Lin Jang
Inhibition of Tunneling Nanotubes between Cancer Cell and the Endothelium Alters the Metastatic Phenotype.
- DOI:10.3390/ijms22116161
- 发表时间:2021-06-07
- 期刊:
- 影响因子:5.6
- 作者:Dash C;Saha T;Sengupta S;Jang HL
- 通讯作者:Jang HL
Template-Enabled Biofabrication of Thick 3D Tissues with Patterned Perfusable Macrochannels.
- DOI:10.1002/adhm.202102123
- 发表时间:2022-04
- 期刊:
- 影响因子:10
- 作者:Davoodi E;Montazerian H;Zhianmanesh M;Abbasgholizadeh R;Haghniaz R;Baidya A;Pourmohammadali H;Annabi N;Weiss PS;Toyserkani E;Khademhosseini A
- 通讯作者:Khademhosseini A
Human Nonalcoholic Steatohepatitis on a Chip.
- DOI:10.1002/hep4.1647
- 发表时间:2021-03
- 期刊:
- 影响因子:5.1
- 作者:Freag MS;Namgung B;Reyna Fernandez ME;Gherardi E;Sengupta S;Jang HL
- 通讯作者:Jang HL
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mehmet Remzi Dokmeci其他文献
Mehmet Remzi Dokmeci的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mehmet Remzi Dokmeci', 18)}}的其他基金
3D printed muscle-bone organ implant for treating large injuries
3D打印肌肉骨骼器官植入物用于治疗大面积损伤
- 批准号:
10305697 - 财政年份:2020
- 资助金额:
$ 41.79万 - 项目类别:
Cardiotoxicity Assays on an Integrated Platform of a Heart-on-a-Chip and an Optical Immunosensor
芯片心脏和光学免疫传感器集成平台的心脏毒性测定
- 批准号:
10249004 - 财政年份:2018
- 资助金额:
$ 41.79万 - 项目类别:
Multifunctional dressing for treatment of diabetic wounds
治疗糖尿病伤口的多功能敷料
- 批准号:
10207665 - 财政年份:2018
- 资助金额:
$ 41.79万 - 项目类别:
Cardiotoxicity Assays on an Integrated Platform of a Heart-on-a-Chip and an Optical Immunosensor
芯片心脏和光学免疫传感器集成平台的心脏毒性测定
- 批准号:
10472876 - 财政年份:2018
- 资助金额:
$ 41.79万 - 项目类别:
Cardiotoxicity Assays on an Integrated Platform of a Heart-on-a-Chip and an Optical Immunosensor
芯片心脏和光学免疫传感器集成平台的心脏毒性测定
- 批准号:
10265584 - 财政年份:2018
- 资助金额:
$ 41.79万 - 项目类别:
Multifunctional dressing for treatment of diabetic wounds
治疗糖尿病伤口的多功能敷料
- 批准号:
10136899 - 财政年份:2018
- 资助金额:
$ 41.79万 - 项目类别:
相似国自然基金
自由曲面空间网格结构3D打印节点力学性能与智能优化研究
- 批准号:52378167
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高面能量密度全3D打印微型锌离子混合电容器的构筑与储能机理研究
- 批准号:22309176
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
3D打印-前端聚合反应耦合新方法构筑凝胶支架材料及其应用基础研究
- 批准号:22378202
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
分层悬浮3D打印工程化类弹性蛋白用于组织工程肺脏的构建研究
- 批准号:32301209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D打印多孔钛合金诱导瘢痕组织膜内巨噬细胞分泌TNFα+/TGFβ1+/BMP2+组织液促进大段骨缺损修复
- 批准号:82302684
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Individual cell bioprinting to generate multi-tissue type condensations for osteochondral tissue regeneration
单个细胞生物打印可生成用于骨软骨组织再生的多组织类型浓缩物
- 批准号:
10659772 - 财政年份:2023
- 资助金额:
$ 41.79万 - 项目类别:
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 41.79万 - 项目类别:
Modality-independent representations of object shape in macaque inferotemporal cortex
猕猴下颞叶皮层物体形状的模态无关表示
- 批准号:
10679530 - 财政年份:2023
- 资助金额:
$ 41.79万 - 项目类别:
Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
- 批准号:
10736961 - 财政年份:2023
- 资助金额:
$ 41.79万 - 项目类别:
A novel breast cancer therapy based on secreted protein ligands from CD36+ fibroblasts
基于 CD36 成纤维细胞分泌蛋白配体的新型乳腺癌疗法
- 批准号:
10635290 - 财政年份:2023
- 资助金额:
$ 41.79万 - 项目类别: