Adapt2Quit – A Machine-Learning, Adaptive Motivational System: RCT for Socio-Economically Disadvantaged smokers”
Adapt2Quit — 机器学习、自适应激励系统:针对社会经济弱势吸烟者的随机对照试验 —
基本信息
- 批准号:10381513
- 负责人:
- 金额:$ 62.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-16 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAwardBehavior TherapyBehavioralBeliefBiochemicalCollaborationsCompetenceComplexComputersDataEffectivenessEngineeringEvaluationFeedbackFrequenciesFundingGoalsHealthHealthcareHeterogeneityIndividualInterventionInterviewLeadLearningMachine LearningMeasuresMediatingMediationMotivationOdds RatioPamphletsPaperPatternPrevalenceProcessRandomizedReadinessSelf DeterminationSelf EfficacySiteSmokeSmokerSmokingSmoking and Health ResearchSystemTarget PopulationsTestingText MessagingTimeactive controlbasebehavior changedesigndigital healthdisadvantaged populationeffectiveness evaluationevidence baseexperimental studyhealth care settingshealth disparityhigh risk populationimprovedinnovationlearning progressionmachine learning algorithmmultidisciplinarynicotine replacementprimary outcomequitlinerecruitrural healthcaresecondary outcomesmoking cessationsmoking-related diseasesocioeconomic disadvantagetailored messagingtheories
项目摘要
7. Project Summary
We will test Adapt2Quit, an innovative Machine-Learning, Adaptive Motivational Messaging System. Adapt2Quit
uses complex, machine-learning algorithms to adaptively select the best messages for a smoker, based upon
multiple attributes, including: 1) the smoker’s profile; 2) the smoker’s explicit feedback over time to the system;
and 3) data from thousands of prior smokers’ profiles and their feedback patterns. Adapt2Quit’s type of machine-
learning is called a recommender system. Outside healthcare, companies (like Amazon) use recommender
systems to continuously learn from user feedback (e.g.: liked product, products purchased) to improve, thus
enhancing personal relevance and customer engagement. Engagement is a huge challenge for digital health. In
the field of computer-tailored health messaging, Adapt2Quit is the first to use machine-learning to continuously
adapt to feedback and select new personalized messages to send to smokers. To evaluate the impact of the
recommender system, Adapt2Quit will be compared with a robust, active control, a simple but effective
messaging system. In our pilot experiment, Adapt2Quit outperformed the control, especially among socio-
economically disadvantaged (SED) smokers. SED smokers are harder to engage in interventions. Thus,
Adapt2Quit’s increased engagement will be of particular importance for targeting SED smokers. In addition to
the potential impact of the Adapt2Quit messages in inducing and engaging smokers in cessation, our goal is to
increase use of the state Quitline. We will recruit 700 SED smokers at two sites. All smokers will complete a
baseline interview and receive a paper brochure with information about the state’s Quitline. Smokers will then
be randomized to: Adapt2Quit or the standard messaging. As the system is designed to enhance engagement,
and through engagement lead to positive actions, Aim 1 will focus on engagement [Hypothesis (H1a) Among
Adapt2Quit smokers, those with higher engagement levels (completed more ratings) will have greater scores on
the perceived competence scale (PCS)]. Aim 2 compares (Adapt2Quit and control) behavior change processes
including perceived competence for smoking cessation and cessation supporting actions (calling a Quitline)
[H2a: Adapt2Quit smokers will have greater scores on the PCS than control smokers; H2b: Adapt2Quit smokers
will adopt more cessation supporting actions (Quitline, NRT) than control smokers]. Aim 3 will assess
effectiveness of the system [H3a: (primary outcome) Adapt2Quit smokers will have greater smoking cessation
rates (6-month point prevalence biochemically verified) than control smokers; H3b: (secondary outcome)
Adapt2Quit smokers will have lower time to first quit attempt than control smokers; H3c: (mediation analysis)
Measured internal and external processes will mediate the effect of Adapt2Quit on smoking cessation]. To
accomplish the above aims, we have brought together a multidisciplinary team with relevant expertise, and a
strong track record of collaboration.
7。项目摘要
我们将测试Adapt2Quit,这是一种创新的机器学习,自适应动机消息传递系统。 Adapt2Quit
使用复杂的机器学习算法来适应为吸烟者选择最佳信息
多个属性,包括:1)吸烟者的个人资料; 2)随着时间的推移,吸烟者对系统的明确反馈;
3)来自成千上万先前吸烟者的资料及其反馈模式的数据。 Adapt2Quit的机器类型
学习称为推荐系统。在医疗保健外,公司(例如亚马逊)使用建议
从用户反馈中不断学习的系统(例如:喜欢的产品,购买的产品)以改进,从而
增强个人相关性和客户参与度。参与是数字健康的巨大挑战。在
Adapt2Quit的计算机量化健康消息领域是第一个使用机器学习的领域
适应反馈并选择新的个性化消息以发送给吸烟者。评估
推荐系统,Adapt2Quit将与强大的,主动的控制,简单但有效
消息系统。在我们的飞行员实验中,Adapt2Quit优于控制,尤其是在社会中
经济困扰(SED)吸烟者。 SED吸烟者很难进行干预。那,
Adapt2Quit的提高参与度对于瞄准吸烟者而言尤其重要。此外
Adapt2Quit信息在戒烟中的潜在影响,我们的目标是
增加国家戒烟线的使用。我们将在两个地点招募700名SED吸烟者。所有吸烟者都会完成
基线访谈并收到一本纸手册,其中包含有关该州戒烟线的信息。然后吸烟者会
随机分配为:Adapt2Quit或标准消息传递。由于该系统旨在增强参与度,因此
通过参与导致积极行动,AIM 1将专注于参与[假设(H1A)
Adapt2Quit吸烟者,参与度较高的人(完成的评级更多)的分数将更高
感知能力量表(PC)]。 AIM 2比较(Adapt2Quit和Control)行为改变过程
包括感知的戒烟和戒烟的能力支持行动(调用Quitline)
[H2A:Adapt2Quit吸烟者在PC上的分数比对照吸烟者的分数更高; H2B:Adapt2Quit吸烟者
与控制吸烟者相比,将采取更多的戒烟支持行动(Quitline,NRT)。 AIM 3将评估
系统的有效性[H3A :(主要结果)Adapt2Quit吸烟者将戒烟更大
比对照吸烟者(6个月的患病率在生物化学上验证); H3B :(次要结果)
与控制吸烟者相比,Adapt2Quit吸烟者将首次退出尝试的时间较低。 H3C :(调解分析)
测得的内部和外部过程将介导Adapt2Quit对戒烟的影响]。到
完成上述目标,我们将一个多学科团队与相关专家组成
协作的良好记录。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rajani Sadasivam其他文献
Rajani Sadasivam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rajani Sadasivam', 18)}}的其他基金
Adapt2Quit – A Machine-Learning, Adaptive Motivational System: RCT for Socio-Economically Disadvantaged smokers”
Adapt2Quit — 机器学习、自适应激励系统:针对社会经济弱势吸烟者的随机对照试验 —
- 批准号:
10642697 - 财政年份:2020
- 资助金额:
$ 62.35万 - 项目类别:
mHealth Messaging to Motivate Quitline Use and Quitting (M2Q2): RCT in rural Vietnam
促进戒烟热线使用和戒烟的移动医疗信息传递 (M2Q2):越南农村地区的随机对照试验
- 批准号:
9899336 - 财政年份:2017
- 资助金额:
$ 62.35万 - 项目类别:
Take a Break: mHealth-assisted skills building challenge for unmotivated smokers
休息一下:移动健康辅助的针对无动力吸烟者的技能培养挑战
- 批准号:
9761283 - 财政年份:2015
- 资助金额:
$ 62.35万 - 项目类别:
Developing Smokers for Smoker (S4S): A Collective Intelligence tailoring system
为吸烟者开发吸烟者 (S4S):集体智慧定制系统
- 批准号:
8899464 - 财政年份:2013
- 资助金额:
$ 62.35万 - 项目类别:
Developing Smokers for Smoker (S4S): A Collective Intelligence tailoring system
为吸烟者开发吸烟者 (S4S):集体智慧定制系统
- 批准号:
8718785 - 财政年份:2013
- 资助金额:
$ 62.35万 - 项目类别:
Developing Smokers for Smoker (S4S): A Collective Intelligence tailoring system
为吸烟者开发吸烟者 (S4S):集体智慧定制系统
- 批准号:
8581564 - 财政年份:2013
- 资助金额:
$ 62.35万 - 项目类别:
Share2Quit: Web-based Peer-driven Referrals for Smoking Cessation
Share2Quit:基于网络的同伴驱动的戒烟推荐
- 批准号:
8243411 - 财政年份:2012
- 资助金额:
$ 62.35万 - 项目类别:
Share2Quit: Web-based Peer-driven Referrals for Smoking Cessation
Share2Quit:基于网络的同伴驱动的戒烟推荐
- 批准号:
8434143 - 财政年份:2012
- 资助金额:
$ 62.35万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Clinical Feasibility of Wireless Catheter-Free Urodynamics for Extended, Comprehensive Urological Evaluation in the Home Setting
无线无导管尿动力学在家庭环境中进行扩展、综合泌尿外科评估的临床可行性
- 批准号:
10762486 - 财政年份:2023
- 资助金额:
$ 62.35万 - 项目类别:
The University of Miami AIDS Research Center on Mental Health and HIV/AIDS - Center for HIV & Research in Mental Health (CHARM)Research Core - EIS
迈阿密大学艾滋病心理健康和艾滋病毒/艾滋病研究中心 - Center for HIV
- 批准号:
10686546 - 财政年份:2023
- 资助金额:
$ 62.35万 - 项目类别:
Improving medication adherence and disease control for patients with multimorbidity: the role of price transparency tools
提高多病患者的药物依从性和疾病控制:价格透明度工具的作用
- 批准号:
10591441 - 财政年份:2023
- 资助金额:
$ 62.35万 - 项目类别:
Mentoring the next generation of researchers at the intersection of opioid use disorder and chronic pain
指导下一代研究人员研究阿片类药物使用障碍和慢性疼痛的交叉点
- 批准号:
10663642 - 财政年份:2023
- 资助金额:
$ 62.35万 - 项目类别: