Developing Smokers for Smoker (S4S): A Collective Intelligence tailoring system

为吸烟者开发吸烟者 (S4S):集体智慧定制系统

基本信息

项目摘要

DESCRIPTION (provided by applicant): Smoking is still the number one preventable cause of cancer death. New approaches are needed to engage smokers in the 21st century in smoking cessation. I propose to develop S4S (Smokers for Smoker), a next- generation patient-centered computer tailored health communication (CTHC) system. Unlike current rule- based CTHCs, S4S will replace rules with complex machine learning algorithms, and use the collective experiences of thousands of smokers engaged in a web-assisted tobacco intervention to enhance personally- relevant tailoring for new smokers entering the system. This NCI K07 will provide a mentored research experience, giving me the opportunity to acquire new competencies in cancer health communication for behavior change, research design and statistical methods underlying clinical trial implementation and evaluation. I will adapt collectiv intelligence algorithms that have been used outside healthcare by companies like Amazon and Google to enhance CTHC. Using knowledge from scientific experts, current CTHC collect baseline patient "profiles" and then use expert-written, rule-based systems to tailor messages to patient subsets. Such theory-based "market segmentation has been effective in helping patients reach lifestyle goals. However, there is a natural limit in the ability of a rule-based system to truly personalize content, and adapt personalization over time. Current CTHC have reached this limit, and I propose to go beyond. My first aim is to develop the Web 2.0 "S4S" recommender system. My second aim is to evaluate S4S within the context of a NCI funded web-assisted tobacco intervention (Decide2Quit.org). In my efforts, I will guided by my primary mentor (Dr. Houston, MD MPH) and two other mentor teams: The Cancer Health Behavior and Communication Team (Stephenie Lemon, PhD and Kathleen Mazor, EdD), and the Clinical Trial Design and Analysis Team (Jeroan Allison, MD, MS and Arlene Ash, PhD). My comprehensive training also includes coursework, seminars, and conferences.
描述(由申请人提供):吸烟仍然是癌症死亡的第一大原因。需要采用新的方法来吸引21世纪的吸烟者戒烟。我建议开发S4S(吸烟者的吸烟者),这是一种以患者为中心的计算机量身定制的健康通信(CTHC)系统。与当前的基于规则的CTHC不同,S4S将用复杂的机器学习算法替换规则,并利用成千上万从事网络辅助烟草干预的吸烟者的集体体验来增强进入系统的新吸烟者的个人相关裁缝。该NCI K07将提供指导的研究经验,使我有机会获得癌症健康传播方面的新能力,以改变行为改变,研究设计和统计方法,这是临床试验实施和评估的基础。我将调整亚马逊和Google等公司在外部医疗保健外使用的集体情报算法来增强CTHC。使用科学专家的知识,当前的CTHC收集基线患者“概况”,然后使用专家编写的基于规则的系统来为患者子集量身定制消息。 Such theory-based "market segmentation has been effective in helping patients reach lifestyle goals. However, there is a natural limit in the ability of a rule-based system to truly personalize content, and adapt personalization over time. Current CTHC have reached this limit, and I propose to go beyond. My first aim is to develop the Web 2.0 "S4S" recommender system. My second aim is to evaluate S4S within the context of a NCI funded web-assisted tobacco intervention (cance2quit.org)。会议。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Rajani Sadasivam的其他基金

Adapt2Quit – A Machine-Learning, Adaptive Motivational System: RCT for Socio-Economically Disadvantaged smokers”
Adapt2Quit — 机器学习、自适应激励系统:针对社会经济弱势吸烟者的随机对照试验 —
  • 批准号:
    10381513
    10381513
  • 财政年份:
    2020
  • 资助金额:
    $ 14.08万
    $ 14.08万
  • 项目类别:
Adapt2Quit – A Machine-Learning, Adaptive Motivational System: RCT for Socio-Economically Disadvantaged smokers”
Adapt2Quit — 机器学习、自适应激励系统:针对社会经济弱势吸烟者的随机对照试验 —
  • 批准号:
    10642697
    10642697
  • 财政年份:
    2020
  • 资助金额:
    $ 14.08万
    $ 14.08万
  • 项目类别:
mHealth Messaging to Motivate Quitline Use and Quitting (M2Q2): RCT in rural Vietnam
促进戒烟热线使用和戒烟的移动医疗信息传递 (M2Q2):越南农村地区的随机对照试验
  • 批准号:
    9899336
    9899336
  • 财政年份:
    2017
  • 资助金额:
    $ 14.08万
    $ 14.08万
  • 项目类别:
Take a Break: mHealth-assisted skills building challenge for unmotivated smokers
休息一下:移动健康辅助的针对无动力吸烟者的技能培养挑战
  • 批准号:
    9761283
    9761283
  • 财政年份:
    2015
  • 资助金额:
    $ 14.08万
    $ 14.08万
  • 项目类别:
Developing Smokers for Smoker (S4S): A Collective Intelligence tailoring system
为吸烟者开发吸烟者 (S4S):集体智慧定制系统
  • 批准号:
    8899464
    8899464
  • 财政年份:
    2013
  • 资助金额:
    $ 14.08万
    $ 14.08万
  • 项目类别:
Developing Smokers for Smoker (S4S): A Collective Intelligence tailoring system
为吸烟者开发吸烟者 (S4S):集体智慧定制系统
  • 批准号:
    8718785
    8718785
  • 财政年份:
    2013
  • 资助金额:
    $ 14.08万
    $ 14.08万
  • 项目类别:
Share2Quit: Web-based Peer-driven Referrals for Smoking Cessation
Share2Quit:基于网络的同伴驱动的戒烟推荐
  • 批准号:
    8243411
    8243411
  • 财政年份:
    2012
  • 资助金额:
    $ 14.08万
    $ 14.08万
  • 项目类别:
Share2Quit: Web-based Peer-driven Referrals for Smoking Cessation
Share2Quit:基于网络的同伴驱动的戒烟推荐
  • 批准号:
    8434143
    8434143
  • 财政年份:
    2012
  • 资助金额:
    $ 14.08万
    $ 14.08万
  • 项目类别:

相似国自然基金

无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
  • 批准号:
    12301508
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
感兴趣区域驱动的主动式采样CT成像算法研究
  • 批准号:
    62301532
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
  • 批准号:
    62303204
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
  • 批准号:
    62303197
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
  • 批准号:
    12371366
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 14.08万
    $ 14.08万
  • 项目类别:
Previvors Recharge: A Resilience Program for Cancer Previvors
癌症预防者恢复活力计划:癌症预防者恢复力计划
  • 批准号:
    10698965
    10698965
  • 财政年份:
    2023
  • 资助金额:
    $ 14.08万
    $ 14.08万
  • 项目类别:
A multicenter study in bronchoscopy combining Stimulated Raman Histology with Artificial intelligence for rapid lung cancer detection - The ON-SITE study
支气管镜检查结合受激拉曼组织学与人工智能快速检测肺癌的多中心研究 - ON-SITE 研究
  • 批准号:
    10698382
    10698382
  • 财政年份:
    2023
  • 资助金额:
    $ 14.08万
    $ 14.08万
  • 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
  • 批准号:
    10656110
    10656110
  • 财政年份:
    2023
  • 资助金额:
    $ 14.08万
    $ 14.08万
  • 项目类别:
HEAR-HEARTFELT (Identifying the risk of Hospitalizations or Emergency depARtment visits for patients with HEART Failure in managed long-term care through vErbaL communicaTion)
倾听心声(通过口头交流确定长期管理护理中的心力衰竭患者住院或急诊就诊的风险)
  • 批准号:
    10723292
    10723292
  • 财政年份:
    2023
  • 资助金额:
    $ 14.08万
    $ 14.08万
  • 项目类别: