Image-Guided Workstation and Tools for Bone Defects

用于骨缺损的图像引导工作站和工具

基本信息

  • 批准号:
    10176482
  • 负责人:
  • 金额:
    $ 48.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-30 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Summary Our long range goal is to develop an image-guided workstation that uses a novel Continuum Dexterous Manipulator (CDM) and tools to enable next generation of minimally- and less-invasive procedures allowing access to regions not currently accessible with conventional surgical tools in orthopaedic surgery. The system and devices will enable treatment of bone defects such as femoroacetabular impingement, metastatic bone disease, severe osteoporosis in areas including the pelvis/acetabulum, femoral neck, peri- and sub- trochanteric regions, as well as the shin and foot, and finally traumatic fracture repair. The near-term focus of this application is the core decompression for the treatment of Avascular Necrosis (AVN) of the femoral head and reduction of pelvis fracture. We propose the development of an image-guided prototype robot-assisted surgical system for planning, real-time intraoperative monitoring, navigation, and updating of the plans. In the United States, avascular necrosis (AVN, also known as osteonecrosis) of the femoral head occurs in 10000-20000 of patients per year between the ages of 20-50 years old. The incidence of the AVN is even higher in Middle Eastern and Asian countries. AVN occurs due to the loss of blood supply to the bone, leading to the spontaneous death of the trabecular bone, which in turn may cause microfractures in the trabecular bone. Depending on the amount of femoral head involved, collapse of the articular surface will occur as the disease advances. Once collapse of the femoral head occurs in these patients, the disease course rarely regresses. Total Hip Arthroplasty (THA) will be the primary surgery of choice and will provide pain relief to those AVN patients. However, because of the young age of the AVN patients, THA is not the most desirable choice. Core decompression is a conventional techniques used for the treatment of the AVN prior to the collapse of the femoral head. Typically in core decompression the lesion area (death bone) is removed by drilling and debriding. After debriding the bone graft will be inserted and/or bioresorbable material such as calcium phosphates will be injected into the core to fill the void and provide stability. The long-term success of core decompression is dependent on many parameters that may be out of the control of surgeons given the existing tools and techniques. Some of the issues that the current conventional techniques for core decompression does not answer are: 1) complete debriding of the death bone requires significant increase in dexterity of the debriding tools, currently not available to the surgeons; 2) While it is ideal to completely remove the death bone, the extent of the bone removal may be limited by the stability requirements of the femoral head to prevent its collapse underweight bearing conditions. Biomechanical analysis of the stability of the structure, therefore, must be important part of the planning. Further, the successful implementation of the plan will require robot-assisted, image-guided navigation technology that, to our knowledge, is currently not available to the surgeons. To our knowledge, tools for biomechanical planning to maintain the stability of the hip after the surgery and robotic platforms for minimally-invasive treatment of osteonecrosis are not developed. In particular, the design of the manipulators for the full debriding of the AVN poses unique challenges because of the opposing requirements for structural strength and flexibility. We propose to develop and test a prototype robot-assisted surgical workstation for minimally-invasive treatment of the AVN. The workstation, during the planning phase, will highlight the site of the lesion in MRI images of the patient and create an optimized surgical plan. During the procedure, the surgeon will use a Continuum dexterous manipulator (CDM) in conjunction with a positioning robot and various tools to remove the death bone and perform structural augmentation. Our goal is to demonstrate that the proposed system can significantly improve the treatment of the AVN and the stability of the hip, therefore, reducing the need for multiple follow-up surgeries and/or THA surgeries at early ages.
概括 我们的长期目标是开发一种使用新型 Continuum Dexterous 的图像引导工作站 机械手 (CDM) 和工具可实现下一代微创和少创手术 进入目前在骨科手术中使用传统手术工具无法进入的区域。系统 和设备将能够治疗骨缺陷,如股骨髋臼撞击、转移性骨 骨盆/髋臼、股骨颈、周围和下等部位的严重骨质疏松症 转子区域以及胫骨和足部,最后是创伤性骨折修复。近期重点 该应用是治疗股骨头缺血性坏死(AVN)的核心减压 以及骨盆骨折的复位。我们建议开发一种图像引导原型机器人辅助 用于计划、实时术中监测、导航和更新计划的手术系统。 在美国,股骨头缺血性坏死(AVN,也称为骨坏死)发生在 每年有10000-20000名20-50岁的患者。 AVN 的发生率均匀 中东和亚洲国家的比例更高。 AVN 的发生是由于骨骼血液供应丧失,导致 导致小梁骨自发死亡,进而可能导致小梁骨微骨折 骨。根据所涉及的股骨头的数量,关节面会发生塌陷 疾病进展。这些患者一旦发生股骨头塌陷,病程很少 回归。全髋关节置换术(THA)将是首选手术,它将缓解疼痛 那些 AVN 患者。然而,由于 AVN 患者年龄较小,THA 并不是最理想的选择 选择。核心减压是术前治疗 AVN 的常规技术。 股骨头塌陷。通常在核心减压中,病变区域(死骨)被去除 钻孔和清创。清创后,将插入骨移植物和/或生物可吸收材料,例如 磷酸钙将被注入岩心以填充空隙并提供稳定性。 岩心减压的长期成功取决于许多可能超出预期的参数 考虑到现有的工具和技术,外科医生的控制。当前传统的一些问题 核心减压技术没有回答的是:1)完全清创死亡骨头需要 显着提高了目前外科医生无法使用的清创工具的灵活性; 2)虽然它是理想的 为了完全去除死亡骨头,去除骨头的程度可能会受到稳定性的限制 股骨头的要求,以防止其在承重条件下塌陷。生物力学 因此,结构稳定性分析必须是规划的重要组成部分。此外, 该计划的成功实施将需要机器人辅助、图像引导的导航技术, 我们的知识目前无法提供给外科医生。 据我们所知,生物力学规划工具可在手术后维持髋关节的稳定性, 用于骨坏死微创治疗的机器人平台尚未开发出来。特别是,设计 完全清创 AVN 的机械手提出了独特的挑战,因为相反 结构强度和灵活性的要求。我们建议开发和测试机器人辅助原型 用于 AVN 微创治疗的手术工作站。工作站在规划阶段, 将在患者的 MRI 图像中突出显示病变部位并制定优化的手术计划。期间 在手术过程中,外科医生将使用 Continuum 灵巧机械手 (CDM) 与 定位机器人和各种工具来移除死亡骨头并进行结构增强。我们的目标是 证明所提出的系统可以显着改善 AVN 的治疗和稳定性 因此,减少了早期多次后续手术和/或全髋关节置换术的需要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(3)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MEHRAN ARMAND其他文献

MEHRAN ARMAND的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MEHRAN ARMAND', 18)}}的其他基金

System for documenting and tracking skin lesions
用于记录和跟踪皮肤病变的系统
  • 批准号:
    10484160
  • 财政年份:
    2022
  • 资助金额:
    $ 48.99万
  • 项目类别:
Robotic System for Spinal Decompression and Interbody Fusion
脊柱减压和椎间融合机器人系统
  • 批准号:
    10610900
  • 财政年份:
    2022
  • 资助金额:
    $ 48.99万
  • 项目类别:
Robotic System for Spinal Decompression and Interbody Fusion
脊柱减压和椎间融合机器人系统
  • 批准号:
    10355589
  • 财政年份:
    2022
  • 资助金额:
    $ 48.99万
  • 项目类别:
Robot-Assisted Femoroplasty with Intraoperative Biomechanical Feedback
具有术中生物力学反馈的机器人辅助股骨成形术
  • 批准号:
    9751870
  • 财政年份:
    2017
  • 资助金额:
    $ 48.99万
  • 项目类别:
Robot-Assisted Femoroplasty with Intraoperative Biomechanical Feedback
具有术中生物力学反馈的机器人辅助股骨成形术
  • 批准号:
    9560807
  • 财政年份:
    2017
  • 资助金额:
    $ 48.99万
  • 项目类别:
X-Ray Image-based Biomechanical Guidance for Hip Surgery
基于 X 射线图像的髋关节手术生物力学指导
  • 批准号:
    9055681
  • 财政年份:
    2015
  • 资助金额:
    $ 48.99万
  • 项目类别:
Preoperative Planning of Femoroplasty
股骨成形术的术前计划
  • 批准号:
    8697012
  • 财政年份:
    2013
  • 资助金额:
    $ 48.99万
  • 项目类别:
Image-Guided Workstation and Tools for Bone Defects
用于骨缺损的图像引导工作站和工具
  • 批准号:
    10460547
  • 财政年份:
    2013
  • 资助金额:
    $ 48.99万
  • 项目类别:
Preoperative Planning of Femoroplasty
股骨成形术的术前计划
  • 批准号:
    8583882
  • 财政年份:
    2013
  • 资助金额:
    $ 48.99万
  • 项目类别:
Image-Guided Workstation and Tools for the Treatment of Bone Defects
用于治疗骨缺损的图像引导工作站和工具
  • 批准号:
    8739285
  • 财政年份:
    2013
  • 资助金额:
    $ 48.99万
  • 项目类别:

相似国自然基金

粪便mtDNA异质性特征及其在哺乳动物年龄估算中的意义
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
EEDA在RPE细胞中的功能及其在年龄相关性视网膜病变中的机制研究
  • 批准号:
    81770946
  • 批准年份:
    2017
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
sFlt-1基因靶向敲除诱导鼠新生血管性眼底病及其机制的实验研究
  • 批准号:
    81271016
  • 批准年份:
    2012
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
Robo4基因敲除诱导小鼠年龄相关性视网膜变性及机制研究
  • 批准号:
    81170853
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
siRNA沉默蛋白酶体β亚基基因诱导小鼠年龄相关性黄斑变性及其分子机制的研究
  • 批准号:
    81000390
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
  • 批准号:
    10751106
  • 财政年份:
    2024
  • 资助金额:
    $ 48.99万
  • 项目类别:
Dravet Syndrome Anti-Epileptic Control by Targeting GIRK Channels
通过针对 GIRK 通道进行 Dravet 综合征抗癫痫控制
  • 批准号:
    10638439
  • 财政年份:
    2023
  • 资助金额:
    $ 48.99万
  • 项目类别:
Unraveling the synaptic and circuit mechanisms underlying a plasticity-driving instructive signal
揭示可塑性驱动指导信号背后的突触和电路机制
  • 批准号:
    10686592
  • 财政年份:
    2023
  • 资助金额:
    $ 48.99万
  • 项目类别:
Dose Flexible Combination 3D-Printed Delivery Systems for Antiviral Therapy in Children
用于儿童抗病毒治疗的剂量灵活组合 3D 打印输送系统
  • 批准号:
    10682185
  • 财政年份:
    2023
  • 资助金额:
    $ 48.99万
  • 项目类别:
Mining host-microbe interactions in the neonatal pancreas to combat diabetes
挖掘新生儿胰腺中宿主-微生物的相互作用来对抗糖尿病
  • 批准号:
    10664448
  • 财政年份:
    2023
  • 资助金额:
    $ 48.99万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了