Unraveling the synaptic and circuit mechanisms underlying a plasticity-driving instructive signal
揭示可塑性驱动指导信号背后的突触和电路机制
基本信息
- 批准号:10686592
- 负责人:
- 金额:$ 141.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-21 至 2026-08-20
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAlzheimer&aposs DiseaseAlzheimer&aposs disease patientAmericanAnimalsAutomobile DrivingBehaviorBehavioralBody Weight ChangesBrainBrain DiseasesCellsCodeCognitionCognitiveComplexDendritesDevelopmentHippocampal FormationHippocampusImpaired cognitionInheritedLaboratoriesLearningMedialMemoryModelingMonitorMusNeuronal PlasticityNeuronsPatternPopulationPositioning AttributeProcessPublishingResearchRoleSignal TransductionSynapsesSynaptic plasticitySystemTechniquesTestingTimeWhole-Cell RecordingsWorkawakecognitive neuroscienceeffective therapyentorhinal cortexexperienceextracellularflexibilityhuman old age (65+)in vivoinsightinstructorlearning algorithmneuraloptogeneticspostsynapticpresynapticresponsespatial memoryvirtual
项目摘要
PROJECT SUMMARY
Learning, fundamental to cognition, requires storing of information in flexible neural activation patterns
and synaptic weight changes (i.e., plasticity) within neuronal ensembles. These representations are
modified with experience on the timescale of seconds to minutes and even lifetimes. Although recent
pivotal work has provided insights into how population activity drives memory-guided behaviors, many
fundamental questions remain about the neural plasticity mechanisms that underlie the formation of these
representations in response to new experiences. The standard synaptic plasticity rule (i.e., spike timing-
dependent plasticity, STDP) requires precisely timed and repetitive pre- and postsynaptic activation,
which is incongruent with the seemingly chaotic activity of networks in awake behaving animals. In
contrast, behavioral timescale synaptic plasticity (BTSP), a learning rule I recently co-discovered to
underlie the development of experience-dependent spatial representations in hippocampal CA1, requires
only a single induction trial and operates on the cognitively relevant timescale of seconds. Thus, BTSP
provides one of the first biologically plausible mechanisms for how a single experience can produce
learning-related changes in brain activity. This previous research has positioned my laboratory to address
fundamental questions regarding the circuit and synaptic mechanisms underlying learning. Building upon
my published work, this proposal will test the model that the medial entorhinal cortex layer 3 (mEC3)
serves as an instructor, providing a context-specific target signal to CA1 neurons via their tuft dendrites,
thereby driving BTSP and directing the CA1 network in how to form a learning-related representation.
Specifically, we will determine how the mEC3 produces this target signal. We will first use extracellular
recordings with Neuropixels probes to monitor the neural activity from large populations of medial
entorhinal cortex (mEC) neurons in awake mice during a flexible spatial memory paradigm that allows
control over the learning time course. Using this approach, we will determine the flow of information
through the mEC network. Second, we will use in vivo whole-cell recordings of mEC3 neurons during the
same learning task to pinpoint the single-cell computations underlying the instructive signal. We will
identify the processes involved, which may include changes in excitability, synaptic input integration, and
plasticity. Third, we will combine activity recording techniques and optogenetics to determine the extent
to which the instructive signal is produced by local computation or inherited from upstream cortical
regions. This proposal will have a far-reaching influence on cellular, systems, and cognitive neuroscience.
As learning is a fundamental component of virtually all major brain functions, understanding the neural
algorithms of learning, from synaptic to population level neural coding, will provide a basis for
understanding how the brain performs all complex tasks that depend upon learning.
项目摘要
学习是认知基础的,需要在灵活的神经激活模式中存储信息
神经元合奏中的突触重量变化(即可塑性)。这些表示是
经过秒至几分钟甚至一生的时间尺度的经验。虽然最近
关键工作为人口活动如何推动记忆引导行为,许多人提供了见解
关于这些形成的神经可塑性机制仍然是基本问题
响应新经验的表示。标准的突触可塑性规则(即,尖峰计时 -
依赖性可塑性,STDP)需要精确的定时和重复的前和突触后激活,
这与醒着行为的动物中网络看似混乱的活动不一致。在
对比,行为时间尺度突触可塑性(BTSP),我最近共同发现了一项学习规则
是海马CA1中依赖经验的空间表示的发展的基础
只有一次归纳试验,并且在认知相关的秒数上进行操作。因此,btsp
为单一体验如何产生的生物学上有合理的机制提供了一种
与学习相关的大脑活动变化。这项先前的研究已将我的实验室定位为解决
有关电路和突触机制的基本问题。建立
我发表的工作,该提案将测试内侧内部皮层3(MEC3)的模型
作为讲师,通过其簇树突向CA1神经元提供特定于上下文的目标信号,
从而驱动BTSP并指示CA1网络如何形成与学习相关的表示。
具体而言,我们将确定MEC3如何产生此目标信号。我们将首先使用细胞外
用神经质子探针的记录来监测大量内侧种群的神经活动
在灵活的空间记忆范式中,在清醒小鼠中的内嗅皮层(MEC)神经元允许
控制学习时间课程。使用这种方法,我们将确定信息流
通过MEC网络。其次,我们将使用MEC3神经元的体内全细胞记录
相同的学习任务以查明指导信号的基础单细胞计算。我们将
确定所涉及的过程,其中可能包括兴奋性,突触输入集成和
可塑性。第三,我们将结合活动记录技术和光遗传学以确定程度
通过局部计算或从上游皮质继承而产生的指导性信号
地区。该建议将对细胞,系统和认知神经科学产生深远影响。
由于学习是几乎所有主要大脑功能的基本组成部分,因此了解神经
从突触到人群级别神经编码的学习算法将为
了解大脑如何执行依赖学习的所有复杂任务。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christine Grienberger其他文献
Christine Grienberger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 141.52万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 141.52万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 141.52万 - 项目类别:
Nursing homes' visitation bans during the COVID-19 pandemic: Effectiveness and consequences.
COVID-19 大流行期间疗养院的探视禁令:有效性和后果。
- 批准号:
10635829 - 财政年份:2023
- 资助金额:
$ 141.52万 - 项目类别:
Defining the Role of Enteric Nervous System Dysfunction in Gastrointestinal Motor and Sensory Abnormalities in Down Syndrome
确定肠神经系统功能障碍在唐氏综合症胃肠运动和感觉异常中的作用
- 批准号:
10655819 - 财政年份:2023
- 资助金额:
$ 141.52万 - 项目类别: