Study of Ill-V Nitride Semiconductor Resonant Cavity Enhanced Photodetector by Molecular Beam Epitaxy

III-V族氮化物半导体谐振腔增强型分子束外延光电探测器研究

基本信息

  • 批准号:
    09650388
  • 负责人:
  • 金额:
    $ 2.18万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

The resonant cavity enhanced photodetector (RCE-PD) is expected to have wavelength selectivity, high quantum efficiency and high-speed characteristics. The photosensitivity characteristics of AlGaN based RCE-PD was theoretically investigate.Investigation of high-quality GaN growth on (0001) AlィイD22ィエD2OィイD23ィエD2 substrates by molecular beam epitaxy using elemental Ga and re-plasma nitrogen as source was carried out. Extreme high-speed GaN growth of 2.6um/hr was also demonstrated by increase of radical nitrogen supply at the substrates. Novel shutter control technique in which nitrogen was alternately supplied during continuous Ga supply was applied for Mg doped GaN growth. As grown p-type GaN with low resistivity (p=2x10ィイD117ィエD1cmィイD1-3ィエD1, ρ=3.8Ωcm) was obtained.The crystal polarity control technique was also demonstrated. The high-temperature grown AlN buffer layer brought about a Ga-polarity GaN growth and the high-temperature grown AlN intermediate layers (HT-AlN-ILs) with diffe … More rent thickness were found to play different roles in improvement of crystal quality. The 8nm-thick HT-AlN-IL brought about improvement of electrical properties. On the other hand, the 2nm-thick HT-AlN-IL improved surface morphology. The combination of these 8nm-thick and 2nm-thick HT-AlN-ILS improved both electrical property and surface morphology, concurrently.Nitrogen polarity-GaN could be grown on the AlィイD12ィエD1OィイD13ィエD1 substrates with enough initial nitridation by RF-plasma nitrogen. The GaN layers were grown with migration enhanced epitaxy (MEE). The dislocation density of MEE-GaN remarkably reduced by insertion of the HT-AlN-ILs and it was clearly observed that most dislocations were bent during passing through the HT-AlN-IL. The dislocation density of MEE-GaN grown on HT-AlN-IL was evaluated to be about 2.1x10ィイD19ィエD1cmィイD1-2ィエD1 by a selective photoelectrochemical wet etching, as a result, the highest RT mobility of 668cmィイD12ィエD1/Vs was achieved.The AlGaN distributed Bragg reflectors for at blue and UV region were grown by molecular beam epitaxy using RF-plasma excited nitrogen. Relatively high reflectivity of 95% and 92% was achieved at the wavelength of 444nm and 377nm, respectively. Less
谐振腔增强光电探测器(RCE-PD)有望具有波长选择性、高量子效率和高速特性,从理论上研究了基于AlGaN的RCE-PD的光敏特性。(0001)上高质量GaN生长的研究。以元素Ga和再等离子体氮为源,进行了AliD22D2OD23D2衬底的超高速分子束外延。通过增加衬底上的自由基氮供应,也证明了 2.6um/hr 的 GaN 生长速度,其中在连续 Ga 供应期间交替供应氮气,用于生长低砷的 Mg 掺杂 p 型 GaN。获得了电阻率(p=2x10D117D1cm,ρ=3.8Ωcm)。还演示了晶体极性控制技术。高温生长的 AlN 缓冲层带来了 Ga 极性 GaN 的生长,并且不同厚度的高温生长的 AlN 中间层 (HT-AlN-IL) 在提高 8nm 晶体质量方面发挥着不同的作用。另一方面,2nm厚的HT-AlN-IL改善了表面形态。 2nm厚的HT-AlN-ILS同时改善了电性能和表面形貌。通过射频等离子体氮进行足够的初始氮化,可以在AlD12D1OD13D1衬底上生长氮极性-GaN。通过迁移增强外延(MEE)生长GaN层通过插入 HT-AlN-IL,MEE-GaN 的位错密度显着降低。可以清楚地观察到,大多数位错在穿过 HT-AlN-IL 的过程中发生了弯曲。通过选择性光电化学湿法刻蚀,在 HT-AlN-IL 上生长的 MEE-GaN 的位错密度约为 2.1x10D19cmD1 -2D1。结果,实现了 668cmD12D1/Vs 的最高 RT 迁移率。使用射频等离子体激发氮通过分子束外延生长了蓝光和紫外区的 AlGaN 分布式布拉格反射器,在 444nm 和 377nm 的波长下分别实现了 95% 和 92% 的较高反射率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
佐々本一 他: "エッチングによるサファイア基板平坦化のGaN成長への寄与" 第58回応用物理学会学術講演会. 4aQ6 (1997)
Hajime Sasamoto 等人:“蚀刻蓝宝石衬底的平坦化对 GaN 生长的贡献”第 58 届日本应用物理学会年会 4aQ6(1997 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Daisuke Sugihara et al.: "Suppression of inversion domain and decrease of threading dislocations in migration enhanced epitaxial GaN by RF-molecular beam epitaxy"Phisica Status Solidi. (印刷中).
Daisuke Sugihara 等人:“通过射频分子束外延抑制迁移增强外延 GaN 中的反转域并减少螺纹位错”Phisica Status Solidi(出版中)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kouichi Kushi et al.: "High speed growth of device quality GaN and InGaN by RF-MBE"Materials Science & Eng. B. B59. 65-68 (1999)
Kouichi Kushi 等人:“通过 RF-MBE 高速生长器件质量 GaN 和 InGaN”材料科学
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Shinichi Nakamura et al.: "InGaN/GaN MQW and Mg-doped GaN growth using a shutter control method by RF-molecular beam epitaxy"Phisica Status Solidi(a). 176. 273-277 (1999)
Shinichi Nakamura 等人:“使用 RF 分子束外延的快门控制方法进行 InGaN/GaN MQW 和 Mg 掺杂 GaN 生长”Phisica Status Solidi(a)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kouichi Kushi et al.: "High speed growth of device quality GaN and InGaN by RF-MBE"Materials Science & Engineering B. B59. 65--68 (1999)
Kouichi Kushi 等人:“通过 RF-MBE 高速生长器件质量 GaN 和 InGaN”材料科学
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KISHINO Katsumi其他文献

KISHINO Katsumi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KISHINO Katsumi', 18)}}的其他基金

Innovation of Three Primary Colors Emitting Devices by Nanocolumn Crystals
纳米柱晶体三基色发光器件的创新
  • 批准号:
    19H00874
  • 财政年份:
    2019
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Innovation of energy and environment-friendly devices by nanocrystal effect
纳米晶效应创新能源环保器件
  • 批准号:
    24000013
  • 财政年份:
    2012
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Specially Promoted Research
Basic research on optical communication wavelength inter-subband transition of III-nitride semiconductors
III族氮化物半导体光通信波长子带间跃迁基础研究
  • 批准号:
    14205057
  • 财政年份:
    2002
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Research on II-VI Compounds Semiconductor Lasers
II-VI族化合物半导体激光器的研究
  • 批准号:
    04452178
  • 财政年份:
    1992
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
RESEARCH OF STACKED TWIN-ACTIVE LAYER GaInAsP/InP DYNAMIC SINGLE MODE LASERS
叠式双活性层GaInAsP/InP动态单模激光器的研究
  • 批准号:
    63550295
  • 财政年份:
    1988
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似国自然基金

基于氮化铝绝缘层的多晶铝-锡共掺杂氧化铟薄膜晶体管研究
  • 批准号:
    62304090
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于大尺寸范德瓦尔斯材料缓冲层的氮化铝单晶薄膜生长行为研究
  • 批准号:
    52273271
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
高透过率大尺寸氮化铝单晶衬底制备
  • 批准号:
    62234003
  • 批准年份:
    2022
  • 资助金额:
    283 万元
  • 项目类别:
    重点项目
氮化铝兰姆波谐振式热红外探测器及其超低功耗应用研究
  • 批准号:
    62174092
  • 批准年份:
    2021
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
相干脉冲泵浦K-波段氮化铝绿光微腔光频梳的研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Ultrawide Bandgap Aluminum Nitride FETs for Power Electronics
职业:用于电力电子器件的超宽带隙氮化铝 FET
  • 批准号:
    2338604
  • 财政年份:
    2024
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Continuing Grant
Infrared photonics using ferroelectric scandium-aluminum nitride semiconductors
使用铁电钪铝氮化物半导体的红外光子学
  • 批准号:
    2414283
  • 财政年份:
    2024
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Continuing Grant
Controlling the polarity of ScAlN via formation of cation/anion vacancy
通过形成阳离子/阴离子空位来控制 ScAlN 的极性
  • 批准号:
    21K04168
  • 财政年份:
    2021
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER:Doped Aluminum Nitride Ferroelectric Microelectromechanical Systems
职业:掺杂氮化铝铁电微机电系统
  • 批准号:
    1944248
  • 财政年份:
    2020
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Continuing Grant
Ultra-high performance and environment-friendly micro-energy harvesters towards self-powered micro/nano-systems for the Internet of Things
超高性能、环保型微能量收集器,面向物联网自供电微/纳米系统
  • 批准号:
    20K15146
  • 财政年份:
    2020
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了