Infrared photonics using ferroelectric scandium-aluminum nitride semiconductors
使用铁电钪铝氮化物半导体的红外光子学
基本信息
- 批准号:2414283
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Nontechnical descriptionThis project investigates the unique electronic and optical properties brought about by incorporation of scandium into traditional nitride semiconductors. These materials enable novel light sources and detectors that can be used in practical applications ranging from chemical sensing and medical diagnostics to power electronics and energy harvesting. The research effort involves material design with computer simulations, synthesis of ultra-pure defect-free semiconductors, as well as structural and optical material characterization. This project also combines material research with educational and outreach activities that aim to increase learning opportunities for students of all ages, inside and outside the traditional classroom. The investigators and students involved in this project participate in outreach activities organized either in-house or at local schools to increase exposure of K-12 students and the general public to modern scientific topics in materials science in a fun, project-oriented environment. Lesson plans are designed and experimental demonstrations of basic optical properties of matter are built for the middle-school summer camp “Physics Inside Out” at Purdue. To maximize impact at the high-school level, the activities engage teachers in summer research. In particular, the teachers are developing inquiry-based lesson plans incorporating concepts related to quantum science into the high-school curriculum. The researchers also design hands-on activities with take-home materials for the annual meeting of the Hoosier Association of Science Teachers.Technical descriptionThe principal objective of this project is to establish wurtzite ScAlN as a viable photonic platform for novel infrared applications. This project exploits the unique native properties of ferroelectric ScAlN and further manipulates them within designed structures to facilitate utilization of the near-infrared range of the spectrum. In particular, optical transitions between quantized states in the conduction band of near lattice-matched ScAlN/GaN heterostructures are utilized to expand device capabilities to generate, detect, and modulate infrared light. III-nitride semiconductors have unique electronic properties that make them suitable for advancing the functionality of semiconductor devices into spectral ranges currently inaccessible with other material systems. The innovative approach employs the emergent photonic material Sc-Al-nitride to mitigate strain-related issues that have impeded progress of nitride photonics into the infrared in the past. The research effort is interdisciplinary and involves material design and growth, structural characterization, and optical characterization. ScAlN/GaN heterostructures are designed using extensive band-structure calculations. To achieve maximum material purity and monolayer-control of the atomic structure, the Sc-containing materials are grown by plasma-assisted molecular beam epitaxy on high quality quasi-bulk GaN substrates. A central task is to identify the epitaxial growth conditions that satisfy the most stringent requirements imposed by near-infrared optical processes. To correlate microstructure with optical and electronic properties, the structure of the semiconductor materials is comprehensively characterized with high-resolution x-ray diffraction, aberration-corrected transmission electron microscopy, and atom-probe tomography. The band structure of the materials is probed experimentally with Fourier transform infrared spectroscopy and photoluminescence. The research contributes to the fundamental understanding of the physics of intersubband optical transitions and nonlinear optical processes. These infrared materials are expected to immediately enable emitters and photodetectors with functionality unmatched by current technologies (wider spectral range, higher speeds, and better temperature performance). They are also ideal candidates for photonic integrated circuits as well as monolithic integration with Si electronics. Successful second-harmonic generation on chip opens avenues for other nonlinear processes such as difference frequency generation and parametric down-conversion. Moreover, the novel Sc-containing semiconductors are beneficial for other applications in electronic (e.g. high-electron mobility transistors), ultraviolet, thermoelectric, piezoelectric, and plasmonic devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述该项目研究了将钪掺入传统氮化物半导体中所带来的独特电子和光学特性,这些材料可实现新型光源和探测器,可用于从化学传感和医疗诊断到电力电子和能量收集的实际应用。研究工作涉及计算机模拟的材料设计、超纯无缺陷半导体的合成以及结构和光学材料表征。该项目还将材料研究与旨在增加学生学习机会的教育和外展活动结合起来。参与该项目的研究人员和学生参与内部或当地学校组织的外展活动,以增加 K-12 学生和公众对材料中现代科学主题的接触。为普渡大学的中学夏令营“物理透彻”设计了课程计划并进行了物质基本光学特性的实验演示,以最大限度地提高在高中的影响力。这些活动让教师参与暑期研究。正在制定基于探究的课程计划,将与量子科学相关的概念纳入高中课程。研究人员还为胡西尔科学教师协会年会设计了带有带回家材料的实践活动。该项目旨在建立纤锌矿 ScAlN 作为新型红外应用的可行光子平台。该项目利用铁电 ScAlN 独特的固有特性,并在设计结构中进一步操纵它们,以促进近红外范围的利用。特别是,近晶格匹配的 ScAlN/GaN 异质结构的导带中的量子态之间的光学跃迁可用于扩展器件产生、检测和调制红外光的能力,该半导体具有独特的电子特性。使它们适合将半导体器件的功能提升到目前其他材料系统无法达到的光谱范围。这种创新方法采用新兴的光子材料钪氮化铝来缓解与应变相关的问题。过去阻碍氮化物光子学进入红外领域的研究工作是跨学科的,涉及材料设计和生长、结构表征以及使用广泛的能带结构计算来设计 ScAlN/GaN 异质结构。为了提高纯度和原子结构的单层控制,通过等离子体辅助分子束外延在高质量准块状 GaN 衬底上生长含钪材料,其中心任务是识别。满足近红外光学工艺最严格要求的外延生长条件 为了将微观结构与光学和电子特性联系起来,通过高分辨率 X 射线衍射、像差校正透射电子来全面表征半导体材料的结构。通过傅里叶变换红外光谱和光致发光对材料的能带结构进行实验探测,该研究有助于对物理学的基本理解。这些红外材料有望立即使发射器和光电探测器具有当前技术无法比拟的功能(更宽的光谱范围、更高的速度和更好的温度性能),它们也是光子集成电路的理想选择。作为与硅电子器件的单片集成,芯片上成功的二次谐波生成为其他非线性过程(例如差频生成和参数下变频)开辟了道路。含钪半导体有利于电子(例如高电子迁移率晶体管)、紫外线、热电、压电和等离激元器件中的其他应用。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势进行评估,被认为值得支持以及更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oana Malis其他文献
Oana Malis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oana Malis', 18)}}的其他基金
Infrared Quantum Materials Based on Scandium-Containing III-Nitrides
基于含钪III族氮化物的红外量子材料
- 批准号:
2004462 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Novel Infrared Optical Materials Based on III-Nitride Semiconductors: Growth, Structure and Properties
基于III族氮化物半导体的新型红外光学材料:生长、结构和性能
- 批准号:
1610893 - 财政年份:2016
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Nonpolar vertical-transport III-nitride devices for near-infrared applications
职业:用于近红外应用的非极性垂直传输 III 族氮化物器件
- 批准号:
1253720 - 财政年份:2013
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Global Strain-Free III-Nitride Heterostructures: Growth, Structure and Near-Infrared Optical Properties
全局无应变 III 族氮化物异质结构:生长、结构和近红外光学性质
- 批准号:
1206919 - 财政年份:2012
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Mid-infrared Semiconductor Lasers Based on Intersubband Transitions in the Valence Band of GaAs/AlAs Quantum Cascade Nanostructures
基于GaAs/AlAs量子级联纳米结构价带子带间跃迁的中红外半导体激光器
- 批准号:
0935899 - 财政年份:2009
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Mid-infrared Semiconductor Lasers Based on Intersubband Transitions in the Valence Band of GaAs/AlAs Quantum Cascade Nanostructures
基于GaAs/AlAs量子级联纳米结构价带子带间跃迁的中红外半导体激光器
- 批准号:
0725384 - 财政年份:2007
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
相似国自然基金
自组装DNA折纸模板指导贵金属图案化生长调控及其纳米光子学性质研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
平带转角二维材料超快光子学研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
有机杂化超高品质因子微腔非线性光子学研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
叠层二维狄拉克电子体系中的等离激元光子学
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
基于光子学的毫米波通信感知深度融合机理
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
One-chip near-infrared computational imaging using integrated photonics
使用集成光子学的单芯片近红外计算成像
- 批准号:
23H05444 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Study of Spin States of Organic Conductors Studied by Magnetic Circular Dichroism Spectroscopy Using Infrared Synchrotron Radiation
红外同步辐射磁圆二色光谱研究有机导体的自旋态
- 批准号:
19K12639 - 财政年份:2019
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Clarification of small ice particles motion during water freezing using Near Infrared camera and dissipative particle dynamics simulations
使用近红外相机和耗散粒子动力学模拟澄清水结冰期间小冰粒的运动
- 批准号:
19K14886 - 财政年份:2019
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Establishment of in vivo measurement of glucose anomers using near-infrared spectroscopy
近红外光谱法体内葡萄糖端基异构体测量方法的建立
- 批准号:
17K15356 - 财政年份:2017
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Ultraprecision forming of hybrid Fresnel lenses using infrared-transparent polymer and single-crystal silicon
使用红外透明聚合物和单晶硅超精密成型混合菲涅耳透镜
- 批准号:
17H03159 - 财政年份:2017
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)