Infrared photonics using ferroelectric scandium-aluminum nitride semiconductors

使用铁电钪铝氮化物半导体的红外光子学

基本信息

  • 批准号:
    2414283
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-08-01 至 2027-07-31
  • 项目状态:
    未结题

项目摘要

Nontechnical descriptionThis project investigates the unique electronic and optical properties brought about by incorporation of scandium into traditional nitride semiconductors. These materials enable novel light sources and detectors that can be used in practical applications ranging from chemical sensing and medical diagnostics to power electronics and energy harvesting. The research effort involves material design with computer simulations, synthesis of ultra-pure defect-free semiconductors, as well as structural and optical material characterization. This project also combines material research with educational and outreach activities that aim to increase learning opportunities for students of all ages, inside and outside the traditional classroom. The investigators and students involved in this project participate in outreach activities organized either in-house or at local schools to increase exposure of K-12 students and the general public to modern scientific topics in materials science in a fun, project-oriented environment. Lesson plans are designed and experimental demonstrations of basic optical properties of matter are built for the middle-school summer camp “Physics Inside Out” at Purdue. To maximize impact at the high-school level, the activities engage teachers in summer research. In particular, the teachers are developing inquiry-based lesson plans incorporating concepts related to quantum science into the high-school curriculum. The researchers also design hands-on activities with take-home materials for the annual meeting of the Hoosier Association of Science Teachers.Technical descriptionThe principal objective of this project is to establish wurtzite ScAlN as a viable photonic platform for novel infrared applications. This project exploits the unique native properties of ferroelectric ScAlN and further manipulates them within designed structures to facilitate utilization of the near-infrared range of the spectrum. In particular, optical transitions between quantized states in the conduction band of near lattice-matched ScAlN/GaN heterostructures are utilized to expand device capabilities to generate, detect, and modulate infrared light. III-nitride semiconductors have unique electronic properties that make them suitable for advancing the functionality of semiconductor devices into spectral ranges currently inaccessible with other material systems. The innovative approach employs the emergent photonic material Sc-Al-nitride to mitigate strain-related issues that have impeded progress of nitride photonics into the infrared in the past. The research effort is interdisciplinary and involves material design and growth, structural characterization, and optical characterization. ScAlN/GaN heterostructures are designed using extensive band-structure calculations. To achieve maximum material purity and monolayer-control of the atomic structure, the Sc-containing materials are grown by plasma-assisted molecular beam epitaxy on high quality quasi-bulk GaN substrates. A central task is to identify the epitaxial growth conditions that satisfy the most stringent requirements imposed by near-infrared optical processes. To correlate microstructure with optical and electronic properties, the structure of the semiconductor materials is comprehensively characterized with high-resolution x-ray diffraction, aberration-corrected transmission electron microscopy, and atom-probe tomography. The band structure of the materials is probed experimentally with Fourier transform infrared spectroscopy and photoluminescence. The research contributes to the fundamental understanding of the physics of intersubband optical transitions and nonlinear optical processes. These infrared materials are expected to immediately enable emitters and photodetectors with functionality unmatched by current technologies (wider spectral range, higher speeds, and better temperature performance). They are also ideal candidates for photonic integrated circuits as well as monolithic integration with Si electronics. Successful second-harmonic generation on chip opens avenues for other nonlinear processes such as difference frequency generation and parametric down-conversion. Moreover, the novel Sc-containing semiconductors are beneficial for other applications in electronic (e.g. high-electron mobility transistors), ultraviolet, thermoelectric, piezoelectric, and plasmonic devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述该项目研究了行业带来的独特的电子和光学特性,用于传统的氮化物半导体。这些材料可实现新型的光源和探测器,可用于从化学敏感性和医学诊断到电力和能量收集的实际应用中。研究工作涉及与计算机模拟的材料设计,无缺陷半导体的合成以及结构和光学材料表征。该项目还将物质研究与教育和外展活动相结合,旨在增加传统教室内外各个年龄段的学生的学习机会。参与该项目的调查人员和学生参加了内部或当地学校组织的外展活动,以增加K-12学生和公众对现代科学科学的现代科学主题的接触,这是一个有趣的,面向项目的环境。课程计划是设计的,并为Purdue的中学夏令营“物理学”建立了物质基本光学特性的实验演示。为了最大程度地提高高中级别的影响,这些活动使教师参与夏季研究。特别是,教师正在制定基于询问的课程计划,该计划编码与量子科学有关的概念中的高中课程。研究人员还使用带回家材料的动手活动为Hoosier科学教师协会的年度会议设计。技术描述该项目的主要目标是将Wurtzite Scaln建立为新型红外应用的可行光子平台。该项目探讨了铁电锯齿的独特天然特性,并在设计的结构中进一步操纵它们,以促进光谱的近红外范围的利用。特别是,在近晶格匹配的Scaln/GAN异质结构的传导带中的量化状态之间的光学转变用于扩展设备功能,以生成,检测和调节受感染的光。 III二硝酸半导体具有独特的电子特性,使其适合将半导体设备的功能推进到当前无法与其他材料系统无法接近的光谱范围中。创新的方法采用了新兴的光子材料SC-氮化物来减轻与应变相关的问题,这些问题阻碍了过去的氮化物光子学进步。研究工作是跨学科的,涉及材料设计和生长,结构表征和光学表征。 Scaln/GAN异质结构是使用广泛的带结构计算设计的。为了实现原子结构的最大材料纯度和单层控制,含SC的材料是通过在高质量的准粉状gan底物上的等离子体辅助分子束外疗中生长的。一个核心任务是确定满足近红外光学过程最严格要求的外延生长条件。为了将微观结构与光学和电子特性相关联,半导体材料的结构具有高分辨率的X射线衍射,通过像差校正的透射电子显微镜和原子螺旋桨术。用傅立叶变换红外光谱和光效率对材料的带结构进行实验探测。这项研究有助于对sub段光学转变和非线性光学过程的物理学的基本理解。预计这些红外材料将立即启用具有当前技术(较宽的光谱范围,更高速度和更高温度性能)的功能性功能的发射器和光电检测器。它们也是光子整合电路以及与SI电子的整体整合的理想候选者。芯片上成功的第二次谐波生成为其他非线性过程(例如差异频率生成和参数下调)打开。此外,新颖的含SC的半导体对电子(例如高电子迁移式晶体管),紫外线,热电,压电和等离子体式设备的其他应用有益于该奖项。该奖项反映了NSF的法定任务,并通过评估了基金会的智能委员会和广泛的批准,并通过评估了支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Oana Malis其他文献

Oana Malis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Oana Malis', 18)}}的其他基金

Infrared Quantum Materials Based on Scandium-Containing III-Nitrides
基于含钪III族氮化物的红外量子材料
  • 批准号:
    2004462
  • 财政年份:
    2020
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Novel Infrared Optical Materials Based on III-Nitride Semiconductors: Growth, Structure and Properties
基于III族氮化物半导体的新型红外光学材料:生长、结构和性能
  • 批准号:
    1610893
  • 财政年份:
    2016
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CAREER: Nonpolar vertical-transport III-nitride devices for near-infrared applications
职业:用于近红外应用的非极性垂直传输 III 族氮化物器件
  • 批准号:
    1253720
  • 财政年份:
    2013
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Global Strain-Free III-Nitride Heterostructures: Growth, Structure and Near-Infrared Optical Properties
全局无应变 III 族氮化物异质结构:生长、结构和近红外光学性质
  • 批准号:
    1206919
  • 财政年份:
    2012
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Mid-infrared Semiconductor Lasers Based on Intersubband Transitions in the Valence Band of GaAs/AlAs Quantum Cascade Nanostructures
基于GaAs/AlAs量子级联纳米结构价带子带间跃迁的中红外半导体激光器
  • 批准号:
    0935899
  • 财政年份:
    2009
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Mid-infrared Semiconductor Lasers Based on Intersubband Transitions in the Valence Band of GaAs/AlAs Quantum Cascade Nanostructures
基于GaAs/AlAs量子级联纳米结构价带子带间跃迁的中红外半导体激光器
  • 批准号:
    0725384
  • 财政年份:
    2007
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant

相似国自然基金

磁场调控分子材料阵列组装用于可重构光子学器件
  • 批准号:
    52303262
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
有机杂化超高品质因子微腔非线性光子学研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
平带转角二维材料超快光子学研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
叠层二维狄拉克电子体系中的等离激元光子学
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于光子学的毫米波通信感知深度融合机理
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
  • 批准号:
    2329014
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Rapid, simple, and ultrasensitive quantitation of KRAS ctDNA at the point of care using CRISPR/Cas amplification and digital resolution biosensor microscopy
使用 CRISPR/Cas 扩增和数字分辨率生物传感器显微镜在护理点快速、简单且超灵敏地定量 KRAS ctDNA
  • 批准号:
    10709211
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
Non-invasive monitoring of gestational health via placental miRNA biomarkers using TRAP technology
使用 TRAP 技术通过胎盘 miRNA 生物标志物无创监测妊娠健康
  • 批准号:
    10754097
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
  • 批准号:
    2329012
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
  • 批准号:
    2329015
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了