Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception

合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理

基本信息

  • 批准号:
    2329012
  • 负责人:
  • 金额:
    $ 62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

The radio frequency (RF) spectrum weaves the very fabric of wireless communications. And it is among the most precious and scarcest of natural resources. Tomorrow’s tech applications such as digital twins, smart vehicles, and augmented reality demand Gigabit-per-second wireless connectivity everywhere all the time. Such demands call for effective mechanisms to guarantee efficient and secure RF spectrum access. Existing methods use simple techniques that can detect users' presence in the spectrum but cannot sense the “who, when, and how” of the spectrum being utilized. Nonetheless, emerging artificial intelligence (AI) methods including but not limited to machine learning (ML) techniques are promising for achieving “RF perception.” A thorny problem in using AI algorithms for RF perception is the inability to process the massive sensed bandwidth of the spectrum. To solve this problem, this project will leverage a hybrid integration approach, where photonic and electronic small chips, or chiplets, will be synergistically combined to facilitate AI/ML-enabled RF perception over the entire RF spectrum. The education component of the project will address the dearth in the US-based semiconductor workforce through a combination of training on photonic and electronic chip design, AI/ML, and wireless technology skills. The FuSe team will mentor women and minorities who are underrepresented, in topics such as semiconductors, chip design, and wireless communication. Outreach to high-school students using AI-based projects will help build a pipeline of students to pursue engineering degrees focusing on semiconductors and computing. A critical educational emphasis is to fast-track training of students on newer FinFET nodes through a complete revamp of analog and digital IC design courses. The PIs will share the developed education and training material amongst the collaborators and make them available online.To achieve AI-enabled spectrum sensing, this convergent FuSe project will co-integrate a photonic integrated circuit (PIC) with mixed-signal and energy-efficient asynchronous digital chiplets to realize real-time wideband RF perception. The PIC front-end will allow RF spectrum processing and channelization of over 24 GHz of bandwidth. The mixed-signal IC will interface the PIC’s output with digital AI accelerator chiplets. The team will create AI/ML algorithms for modulation recognition, spectrum sensing, and detection of wireless internet-of-things (IoT) devices or specific RF hardware front-ends using fast convolutional neural networks. PIs will employ high-level synthesis (HLS) of speed/power-efficient RF processing cores for real-time AI/ML algorithm implementation. These HLS prototypes will be custom optimized for minimum chip area and power consumption and will achieve low complexity and fast throughput using weight quantization, compressive processing, quantization-aware retraining, signal flow graph pruning, and power/area-optimized digital computing circuits. The team will synthesize the digital cores as asynchronous digital chiplets. Finally, the photonics and electronic chiplets will be taped-out and fabricated using state-of-the-art commercial foundries including the FinFET-based CMOS process, and then packaged for testing and evaluation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
射频 (RF) 频谱构成了无线通信的基础,它是最宝贵和最稀缺的自然资源之一,数字孪生、智能汽车和增强现实等未来的技术应用需要每秒千兆位的无线连接。这些需求需要有效的机制来保证高效和安全的射频频谱访问,现有方法使用简单的技术,可以检测用户在频谱中的存在,但无法感知频谱的“谁、何时以及如何”。被利用。新兴的人工智能(AI)方法,包括但不限于机器学习(ML)技术,有望实现“射频感知”。使用人工智能算法进行射频感知的一个棘手问题是无法处理大量感知到的频谱带宽。为了解决这个问题,该项目将利用混合集成方法,将光子和电子小芯片或小芯片协同组合,以促进整个射频频谱上支持人工智能/机器学习的射频感知。该项目的教育部分将。解决FuSe 团队将通过结合光子和电子芯片设计、人工智能/机器学习和无线技术技能培训,针对半导体劳动力短缺的问题,在半导体、芯片设计、使用基于人工智能的项目向高中生进行推广将有助于建立学生攻读半导体和计算工程学位的渠道,一个关键的教育重点是通过一个新的 FinFET 节点快速培训学生。模拟的彻底改造PI 将在合作者之间共享开发的教育和培训材料,并将其在线提供。为了实现人工智能支持的频谱感测,这个融合 FuSe 项目将与混合光子集成电路 (PIC) 共同集成。 -信号和高能效异步数字芯片,可实现实时宽带射频感知。混合信号 IC 将实现射频频谱处理和超过 24 GHz 带宽的通道化。该团队将使用快速卷积神经网络创建 AI/ML 算法,用于调制识别、频谱感知以及无线物联网 (IoT) 设备或特定 RF 硬件前端的检测。 PI 将采用速度/节能射频处理核心的高级综合 (HLS) 来实现实时 AI/ML 算法,这些 HLS 原型将针对最小芯片面积和功耗进行定制优化,并实现低复杂性。以及使用权重量化、压缩处理、量化感知再训练、信号流图修剪和功率/面积优化数字计算电路的快速吞吐量,该团队将把数字核心合成为异步数字小芯片。使用最先进的商业代工厂(包括基于 FinFET 的 CMOS 工艺)进行流片和制造,然后进行封装以进行测试和评估。该奖项反映了 NSF 的法定使命通过使用基金会的智力优点和更广泛的影响审查标准进行评估,并被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Habarakada Madanayake其他文献

Habarakada Madanayake的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Habarakada Madanayake', 18)}}的其他基金

Collaborative Research: SWIFT: AI-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning
合作研究:SWIFT:基于人工智能的传感通过频谱适应和终身学习提高弹性
  • 批准号:
    2229471
  • 财政年份:
    2023
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
I-Corps: NextG Wireless Communications
I-Corps:NextG 无线通信
  • 批准号:
    2243346
  • 财政年份:
    2022
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
Collaborative Research: Distributed Electro-Mechanical Transmitters for Adaptive and Power-Efficient Wireless Communications in RF-Denied Environments
合作研究:分布式机电发射器,用于射频干扰环境中的自适应和高能效无线通信
  • 批准号:
    1904382
  • 财政年份:
    2019
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
Collaborative Research: Wideband Multi-Beam Antenna Arrays: Low-Complexity Algorithms and Analog-CMOS Implementations
合作研究:宽带多波束天线阵列:低复杂度算法和模拟 CMOS 实现
  • 批准号:
    1902283
  • 财政年份:
    2018
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
SpecEES: Collaborative Research: Spatially Oversampled Dense Multi-Beam Millimeter-Wave Communications for Exponentially Increased Energy-Efficiency
SpecEES:协作研究:空间过采样密集多波束毫米波通信,以指数方式提高能源效率
  • 批准号:
    1854798
  • 财政年份:
    2018
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
Collaborative Research: Wideband Multi-Beam Antenna Arrays: Low-Complexity Algorithms and Analog-CMOS Implementations
合作研究:宽带多波束天线阵列:低复杂度算法和模拟 CMOS 实现
  • 批准号:
    1711625
  • 财政年份:
    2017
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
SpecEES: Collaborative Research: Spatially Oversampled Dense Multi-Beam Millimeter-Wave Communications for Exponentially Increased Energy-Efficiency
SpecEES:协作研究:空间过采样密集多波束毫米波通信,以指数方式提高能源效率
  • 批准号:
    1731722
  • 财政年份:
    2017
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
CI-P: Collaborative Project: Planning for Community Infrastructure to Support Research for Simulating Complex Systems
CI-P:合作项目:规划社区基础设施以支持复杂系统仿真研究
  • 批准号:
    1629903
  • 财政年份:
    2016
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
Collaborative Research: Electronically-Scanned Wideband Digital Aperture Antenna Arrays using Multi-Dimensional Space-Time Circuit-Network Resonance: Theory and Hardware
合作研究:使用多维时空电路网络谐振的电子扫描宽带数字孔径天线阵列:理论和硬件
  • 批准号:
    1408361
  • 财政年份:
    2014
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
EARS: Collaborative Research: Enhancing Spectral Access via Directional Spectrum Sensing Employing 3D Cone Filterbanks: Interdisciplinary Algorithms and Prototypes
EARS:协作研究:使用 3D 锥形滤波器组通过定向频谱传感增强频谱访问:跨学科算法和原型
  • 批准号:
    1247940
  • 财政年份:
    2012
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant

相似国自然基金

基于FRET受体上升时间的单分子高精度测量方法研究
  • 批准号:
    22304184
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
脂质多聚复合物mRNA纳米疫苗的构筑及抗肿瘤治疗研究
  • 批准号:
    52373161
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
屏障突破型原位线粒体基因递送系统用于治疗Leber遗传性视神经病变的研究
  • 批准号:
    82304416
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
细胞硬度介导口腔鳞癌细胞与CD8+T细胞间力学对话调控免疫杀伤的机制研究
  • 批准号:
    82373255
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
乙酸钙不动杆菌上调DUOX2激活PERK/ATF4内质网应激在炎症性肠病中的作用机制研究
  • 批准号:
    82300623
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328975
  • 财政年份:
    2024
  • 资助金额:
    $ 62万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328973
  • 财政年份:
    2024
  • 资助金额:
    $ 62万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328972
  • 财政年份:
    2024
  • 资助金额:
    $ 62万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328974
  • 财政年份:
    2024
  • 资助金额:
    $ 62万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Indium selenides based back end of line neuromorphic accelerators
合作研究:FuSe:基于硒化铟的后端神经形态加速器
  • 批准号:
    2328741
  • 财政年份:
    2023
  • 资助金额:
    $ 62万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了