CRII:SCH:Self-Supervised Contrastive Representation Learning for Medical Time Series
CRII:SCH:医学时间序列的自监督对比表示学习
基本信息
- 批准号:2245894
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Medical time series data includes an individual's medical data that are collected over a period of time. The data can include a variety of physiological information, such as brain activity, heart rate, and/or blood pressure. By analyzing medical time series data, researchers and healthcare providers can gain a better understanding of how a patient's health is changing and make predictions about future outcomes. Artificial intelligence (AI) models can be very helpful in uncovering insights from medical data and understanding the progression of a disease. However, using AI techniques can require a large number of high-quality professional annotations (notes by healthcare providers), which can be costly and hard to obtain. For example, while devices in intensive care units can continuously monitor vital signs, physicians may only have the time to review and annotate a small portion of the data to note important events. Moreover, the annotations may not be reliable because doctors may have different opinions patients or events. To this end, this project will build innovative technologies to provide insightful understanding of a patient’s health with minimal expert input. Overall, this project aims to promote the development of smart healthcare, relieve the burden on physicians, and enhance the quality of life.This project will develop a novel self-supervised contrastive framework to learn representations from medical time series data. Specifically, the project will focus on the following tasks: (1) developing a frequency-aware contrastive framework for unimodal time series data, which leverages the cohesion between time-based and frequency-based representations of the same sample; (2) applying the established framework to analyze Electroencephalography (EEG) signals for the diagnosis of Alzheimer's Disease (AD); (3) extending the framework to multimodal medical time series data by constructing a medical graph that models the dependencies among diverse medical entities and integrates representations through graph message passing; and (4) applying the resulting model to predict clinical outcomes using multimodal vital signals, with a focus on improving interpretability through the learned graph attention weights. The investigator will disseminate the benefits of self-supervised methods to the medical community, and organize special issues and workshops to promote research in weakly-supervised methods for healthcare. This project, thereby, will further lay the groundwork for augmenting the medical system with advanced AI models, and reduce the burden on physicians by accelerating the decision-making process. For education in the interdisciplinary area of AI and healthcare, this project will deliver pioneering knowledge to students while providing real-world case studies and practical materials to young scientists.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
医疗时间序列数据包括在一段时间内收集的个人医疗数据,研究人员通过分析医疗时间序列数据可以包括各种生理信息,例如大脑活动、心率和/或血压。医疗保健提供者可以更好地了解患者的健康状况如何变化,并对未来的结果进行预测。然而,使用人工智能可以非常有助于从医疗数据中发现见解并了解疾病的进展。技术可能需要大量高质量的专业注释(医疗保健提供者的注释)可能成本高昂且难以获得,例如,虽然重症监护病房中的设备可以持续监测生命体征,但医生可能只有时间检查和注释一小部分。此外,由于医生可能对患者或事件有不同的意见,因此注释可能不可靠。为此,该项目将构建创新技术,以最少的专家投入提供对患者健康状况的深入了解。该项目旨在促进发展智能医疗,减轻医生负担,提高生活质量。该项目将开发一种新颖的自监督对比框架来学习医疗时间序列数据的表示,具体而言,该项目将重点关注以下任务:(1)开发用于单峰时间序列数据的频率感知对比框架,该框架利用同一样本的基于时间和基于频率的表示之间的凝聚力;(2)应用已建立的框架来分析脑电图(EEG)信号以诊断阿尔茨海默病;疾病(AD);(3) 通过构建医学图来将框架扩展到多模式医疗时间序列数据,该医学图对不同医疗实体之间的依赖关系进行建模并通过图消息传递来集成表示;(4) 应用所得模型来预测临床结果;多模态生命信号,重点是通过学习的图形注意力权重来提高可解释性。研究人员将向医学界传播自我监督方法的好处,并组织特别问题和研讨会,以促进弱监督医疗方法的研究。这个项目, ,将进一步为利用先进的人工智能模型增强医疗系统奠定基础,从而通过加速决策过程来减轻医生的负担,对于人工智能和医疗保健跨学科领域的教育,该项目将提供开创性的知识。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiang Zhang其他文献
Mechanism for covalence bond benzene dimers formation: A DFT and MP2 investigation
共价键苯二聚体形成机制:DFT 和 MP2 研究
- DOI:
10.1016/j.cplett.2014.07.030 - 发表时间:
2014-08-28 - 期刊:
- 影响因子:2.8
- 作者:
Yuanyuan Qin;R. Huo;Xiang Zhang - 通讯作者:
Xiang Zhang
Frustratingly Easy Knowledge Distillation via Attentive Similarity Matching
通过细心的相似性匹配轻松地提取知识
- DOI:
10.1109/icpr56361.2022.9956410 - 发表时间:
2022-08-21 - 期刊:
- 影响因子:0
- 作者:
Dingyao Chen;Huibin Tan;L. Lan;Xiang Zhang;Tianyi Liang;Zhigang Luo - 通讯作者:
Zhigang Luo
Finding and Extracting Academic Information from Conference Web Pages
从会议网页查找和提取学术信息
- DOI:
10.1007/978-3-642-41629-3_6 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Peng Wang;Xiang Zhang;F. Zhou - 通讯作者:
F. Zhou
Treatment and prognosis of cervical cancer associated with pregnancy: analysis of 20 cases from a Chinese tumor institution
妊娠相关宫颈癌的治疗及预后:中国某肿瘤机构20例分析
- DOI:
10.1631/jzus.b1400251 - 发表时间:
2015-05-12 - 期刊:
- 影响因子:5.1
- 作者:
Xiang Zhang;Yong;Yue Yang - 通讯作者:
Yue Yang
Boosting off-chip interconnects through chip-to-chip capacitive coupled communication
通过芯片间电容耦合通信增强片外互连
- DOI:
10.1109/epeps.2017.8329736 - 发表时间:
2017-10-01 - 期刊:
- 影响因子:0
- 作者:
Xiang Zhang;Dongwon Park;Chung - 通讯作者:
Chung
Xiang Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiang Zhang', 18)}}的其他基金
CAREER: Multiscale Reduced Order Modeling and Design to Elucidate the Microstructure-Property-Performance Relationship of Hybrid Composite Materials
职业:通过多尺度降阶建模和设计来阐明混合复合材料的微观结构-性能-性能关系
- 批准号:
2341000 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Multiscale Reduced-Order Modeling and Experimental Framework for Lithium-ion Batteries under Mechanical Abuse Conditions
协作研究:机械滥用条件下锂离子电池的集成多尺度降阶建模和实验框架
- 批准号:
2114822 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
MRI: Acquisition of a Low-Vibration, Cryogen-Free Cryostat Microscope System
MRI:获取低振动、无冷冻剂的低温恒温器显微镜系统
- 批准号:
1725335 - 财政年份:2017
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
EAGER: Advancing High-Efficiency Nanoscale Antiferromagnetic Spintronics with Two-Dimensional Half Metals
EAGER:利用二维半金属推进高效纳米级反铁磁自旋电子学
- 批准号:
1753380 - 财政年份:2017
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Toward Robust and Scalable Discovering of Significant Associations in Massive Genetic Data
III:媒介:合作研究:在海量遗传数据中稳健且可扩展地发现显着关联
- 批准号:
1664629 - 财政年份:2016
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CAREER: Novel Approaches for Mining Large and Complex Networks
职业:挖掘大型复杂网络的新方法
- 批准号:
1552915 - 财政年份:2016
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
CAREER: Novel Approaches for Mining Large and Complex Networks
职业:挖掘大型复杂网络的新方法
- 批准号:
1707548 - 财政年份:2016
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
INSPIRE Track 1: Exploring New Route of Optically Mediated Self-Assembly: Final Material Properties Determine Its Structures
INSPIRE 轨道 1:探索光介导自组装的新途径:最终材料特性决定其结构
- 批准号:
1344290 - 财政年份:2013
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Materials World Network: Classical and Quantum Optical Metamaterials by Combining Top-down and Bottom-up Fabrication Techniques
材料世界网络:结合自上而下和自下而上制造技术的经典和量子光学超材料
- 批准号:
1210170 - 财政年份:2012
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Toward Robust and Scalable Discovering of Significant Associations in Massive Genetic Data
III:媒介:合作研究:在海量遗传数据中稳健且可扩展地发现显着关联
- 批准号:
1162374 - 财政年份:2012
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似国自然基金
基于生物类芬顿的LA/Sch@BB耦合系统去除水产养殖尾水中抗生素的效果与机制研究
- 批准号:42377063
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
具有低聚合收缩和生态防龋双功能的埃洛石纳米管@SCH-79797改性复合树脂的研究
- 批准号:82170950
- 批准年份:2021
- 资助金额:52 万元
- 项目类别:面上项目
一类稳态Schödinger-Poisson-Slater方程标准化解的研究
- 批准号:11501137
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
锥中修改的Poisson-Sch积分在无穷远点处的渐近行为及其应用
- 批准号:U1304102
- 批准年份:2013
- 资助金额:30.0 万元
- 项目类别:联合基金项目
酵母中Sch9蛋白激酶信号途径调控衰老的分子机理
- 批准号:30671181
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
SCH: Contactless and Engagement-free Sleep Apnea Monitoring and Characterization
SCH:非接触式、免接触式睡眠呼吸暂停监测和表征
- 批准号:
10816627 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Collaborative Research: SCH: Psychophysiological sensing to enhance mindfulness-based interventions for self-regulation of opioid cravings
合作研究:SCH:心理生理学传感,以增强基于正念的干预措施,以自我调节阿片类药物的渴望
- 批准号:
2320678 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
SCH: Dementia Early Detection for Under-represented Populations via Fair Multimodal Self-Supervised Learning
SCH:通过公平的多模式自我监督学习对代表性不足的人群进行痴呆症早期检测
- 批准号:
10816864 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Collaborative Research: SCH: Psychophysiological sensing to enhance mindfulness-based interventions for self-regulation of opioid cravings
合作研究:SCH:心理生理学传感,以增强基于正念的干预措施,以自我调节阿片类药物的渴望
- 批准号:
2124282 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
SCH: Striking a Balance: Trust and Privacy in Using Adolescents' Data for Diabetes Self-Management
SCH:取得平衡:使用青少年数据进行糖尿病自我管理的信任和隐私
- 批准号:
10602775 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别: