FMSG: Cyber: Learning Foundation Models for Manufacturing Design Automation
FMSG:网络:制造设计自动化的学习基础模型
基本信息
- 批准号:2328032
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Large foundation models, such as GPT-4, LLaMA, CLIP, and BLIP-2, have demonstrated remarkable intelligence in interpreting user input and generating corresponding content. Such advancements reveal the potential for automating the manufacturing design process, as new foundation models could be created to understand a designer's intentions via inputs such as natural language, sketches, photos, or other modalities. These models can then automatically generate manufacturing designs in the form of CAD (Computer-Aided Design) models, and from which, further help the generation of manufacturing process instructions (e.g., G-code) by optimizing process selections and parameter settings. To realize this vision, this Future CyberManufacturing research project develops novel foundation models and learning methods that enable manufacturing design automation. It addresses unique characteristics and challenges in manufacturing designs, such as specific data types and stringent requirements (e.g., product specifications, manufacturing constraints, material selections), complex and diverse manufacturing processes, and difficulty in collecting large amounts of high-quality training data. The success of the project could bring transformative impacts by reducing design time, minimizing costs, and increasing product diversity and quality. Furthermore, a highly automated manufacturing design process could lower barriers for designers without significant manufacturing expertise, unleash their creativity, and increase labor participation in manufacturing. The end products would be more diverse and better suited to customer needs, thus benefiting society as a whole. The project develops a two-stage framework that includes novel foundation models and learning methods for manufacturing design automation. The first stage takes natural language and possibly additional images (drawings, sketches, photos, etc.) as input, and generates CAD models in textual representation as output, possibly followed by a manual model validation and revision step. This automatic generation of CAD models are enabled by novel methods for manufacturing-driven tuning of existing pre-trained language and vision models, multi-modal model fusion in manufacturing-specific representation space, design of a CAD generative decoder, and prompt engineering for model improvement. The second stage takes CAD models as input, along with optional textual hints (e.g., preferred manufacturing processes, cost constraints, etc.), and generates optimized manufacturing decisions, particularly the selection of processes and the setting of key parameters. These decisions, combined with existing tools, can help generate detailed manufacturing process instructions (e.g., G-code, additive manufacturing instructions). This stage includes novel methods for unsupervised learning of a process-agnostic foundation language model, supervised multi-task learning of process-dependent backends for optimizing process parameters, and reinforcement learning for process selection and further improvement of the input CAD model.This Future Manufacturing research is supported by the Computer and Information Science and Engineering Directorate's Division of Computer and Network Systems (CISE/CNS) and the Social, Behavioral and Economic Sciences Directorate’s Division of Social and Economic Sciences (SBE/SES).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
GPT-4,Llama,Clip和Blip-2等大型基础模型在解释用户输入和生成相应的内容方面表现出了显着的智能。这些进步揭示了自动化制造设计过程的潜力,因为可以创建新的基础模型,以通过自然语言,草图,照片或其他方式来理解设计师的意图。然后,这些模型可以自动以CAD(计算机辅助设计)模型的形式生成制造设计,并通过优化过程选择和参数设置来进一步帮助生成制造过程指令(例如G-Code)。为了实现这一愿景,这一未来的网络制造研究项目发展新颖的基础模型和学习方法,使制造设计自动化。它解决了制造设计中的独特特征和挑战,例如特定的数据类型和严格的要求(例如,产品规格,制造限制,材料选择),复杂而多样化的制造过程,在收集大量高质量培训数据方面很难。该项目的成功可以通过减少设计时间,最小化成本以及提高产品多样性和质量来带来变革性的影响。此外,除非其创造力并增加制造业的劳动力参与,否则高度自动化的制造设计过程可以降低设计人员的障碍。最终产品将更加多样化,更适合客户需求,从而使整个社会受益。该项目开发了一个两阶段的框架,其中包括用于制造设计自动化的新颖基础模型和学习方法。第一阶段将自然语言和可能的其他图像(图,草图,照片等)作为输入,并以文本表示形式生成CAD模型作为输出,然后进行手动模型验证和修订步骤。这种自动生成的CAD模型是通过用于制造现有的预训练语言和视觉模型的新方法来启用的,在制造特异性表示空间中的多模式模型融合,CAD通用解码器的设计以及及时的工程工程进行模型改进。第二阶段将CAD模型作为输入,以及可选的文本提示(例如,首选的制造过程,成本限制等),并生成优化的制造决策,尤其是过程的选择和关键参数的设置。这些决定及其现有工具可以帮助生成详细的制造过程指令(例如G代码,增材制造说明)。 This stage includes novel methods for unsupervised learning of a process-agnostic foundation language model, supervised multi-task learning of process-dependent backends for optimizing process parameters, and reinforcement learning for process selection and further improvement of the input CAD model.This Future Manufacturing research is supported by the Computer and Information Science and Engineering Directorate's Division of Computer and Network Systems (CISE/CNS) and the Social, Behavioral and Economic Sciences Directorate's Division社会和经济科学(SBE/SES)。该奖项反映了NSF的法定使命,并通过使用基金会的知识分子优点和更广泛的影响标准来评估,以诚实的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qi Zhu其他文献
Effect of maternal sleep in late pregnancy on leptin and lipid levels in umbilical cord blood. Sleep Med. 2019.
孕晚期母亲睡眠对脐带血瘦素和血脂水平的影响
- DOI:
10.1016/j.sleep.2019.11.1194 - 发表时间:
2019 - 期刊:
- 影响因子:4.8
- 作者:
Min Meng;Yanrui Jiang;Lixia Zhu;Guanghai Wang;Qingmin Lin;Wanqi Sun;Yuanjin Song;Shumei Dong;Yujiao Deng;Tingyu Rong;Qi Zhu;Hao Mei;Fan Jiang - 通讯作者:
Fan Jiang
Effects of Hot Protons on the Pitch Angle Scattering of Ring Current Protons by EMIC Waves
热质子对EMIC波环流质子俯仰角散射的影响
- DOI:
10.1029/2021ja030255 - 发表时间:
2022-03 - 期刊:
- 影响因子:0
- 作者:
Qi Zhu;Xing Cao;Binbin Ni;Xudong Gu;Xin Ma - 通讯作者:
Xin Ma
Intensified monitoring of circadian blood pressure and heart rate before and after intravitreous injection of bevacizumab: preliminary findings of a pilot study
玻璃体内注射贝伐单抗前后昼夜血压和心率的强化监测:一项试点研究的初步结果
- DOI:
10.1007/s10792-008-9221-7 - 发表时间:
2009 - 期刊:
- 影响因子:1.6
- 作者:
F. Ziemssen;Qi Zhu;S. Peters;S. Grisanti;Mohammed El Wardani;P. Szurman;K. Bartz;T. Ziemssen;Tuebingen Bevacizumab Study Group - 通讯作者:
Tuebingen Bevacizumab Study Group
Synthesis, Characterization, Crystal Structure, and Fluorescence Properties of a Schiff Base Containing Aliphatic Spacers
含有脂肪族间隔基的希夫碱的合成、表征、晶体结构和荧光性质
- DOI:
10.1080/15533174.2011.591870 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Liansheng Zeng;C. Fu;L. Lv;Geng;Qi Zhu - 通讯作者:
Qi Zhu
Cognitive Driven Multilayer Self-Paced Learning with Misclassified Samples
认知驱动的多层自定进度学习与错误分类的样本
- DOI:
10.1155/2019/8127869 - 发表时间:
2019 - 期刊:
- 影响因子:2.3
- 作者:
Qi Zhu;Ning Yuan;Donghai Guan - 通讯作者:
Donghai Guan
Qi Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qi Zhu', 18)}}的其他基金
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
- 批准号:
2324936 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CPS: Synergy: Securing the Timing of Cyber-Physical Systems
CPS:协同:确保网络物理系统的时序
- 批准号:
1839511 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: SOlSTICe: Software Synthesis with Timing Contracts for Cyber-Physical Systems
职业:SolSTice:网络物理系统的带有定时合同的软件综合
- 批准号:
1834701 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CPS: Breakthrough: Collaborative Research: A Framework for Extensibility-Driven Design of Cyber-Physical Systems
CPS:突破:协作研究:网络物理系统可扩展性驱动设计的框架
- 批准号:
1834324 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CPS: Breakthrough: Collaborative Research: A Framework for Extensibility-Driven Design of Cyber-Physical Systems
CPS:突破:协作研究:网络物理系统可扩展性驱动设计的框架
- 批准号:
1646381 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CPS: Synergy: Securing the Timing of Cyber-Physical Systems
CPS:协同:确保网络物理系统的时序
- 批准号:
1646641 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: SOlSTICe: Software Synthesis with Timing Contracts for Cyber-Physical Systems
职业:SolSTice:网络物理系统的带有定时合同的软件综合
- 批准号:
1553757 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
小样本条件下的异质信息网络表示学习与应用
- 批准号:62306322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于网络科学的学习认知机理及超图认知诊断技术研究
- 批准号:62377022
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
时序深度可加网络的算法与学习理论研究
- 批准号:62306338
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于稳态可塑性机制的类脑脉冲神经网络(SNN)学习方法研究
- 批准号:62306001
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
网络入侵检测机器学习模型多维鲁棒性评测方法研究
- 批准号:62372126
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
CAREER: Temporal Causal Reinforcement Learning and Control for Autonomous and Swarm Cyber-Physical Systems
职业:自治和群体网络物理系统的时间因果强化学习和控制
- 批准号:
2339774 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
An innovative cyber compliance platform using AI, live monitoring data and machine learning to automate compliance and due diligence completion.
一个创新的网络合规平台,使用人工智能、实时监控数据和机器学习来自动完成合规和尽职调查。
- 批准号:
10100493 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Collaborative R&D
Career: Learning-Enabled Medical Cyber-Physical Systems
职业:支持学习的医疗网络物理系统
- 批准号:
2339637 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
- 批准号:
2324936 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
- 批准号:
2324937 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant