Collaborative Research: Wideband Multi-Beam Antenna Arrays: Low-Complexity Algorithms and Analog-CMOS Implementations
合作研究:宽带多波束天线阵列:低复杂度算法和模拟 CMOS 实现
基本信息
- 批准号:1902283
- 负责人:
- 金额:$ 18.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-25 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Federal Communications Commission recognizes the need for the wireless industry to explore the 28-95 GHz millimeter-wave (mm-wave) bands where wider bandwidth is available, and future allocations may reach above 100 GHz. This explosion of mm-wave bandwidth opens up applications in 5G wireless systems spanning communications, localization, imaging, and radar. This project addresses fundamental scientific and engineering challenges in generating multiple parallel radio "beams" at mm-wave frequencies. A radio beam refers to a directional channel that establishes point-to-point contact for wireless communications and remote sensing. The ability to form a large number of such radio beams with high bandwidths will tremendously improve the performance for next-generation wireless systems. For example, multiple beams are essential for achieving the orders-of-magnitude increases in capacity, data rate, and geographical penetration required by the explosive growth in wireless applications. Moreover, they are important for both transmitters and receivers. The project will draw on an analogy between the spatial Fourier transform and a thin optical lens to obtain multiple wideband beams. Unlike lens-antenna-based approaches in the literature, this project will use a planar aperture antenna in conjunction with analog integrated circuits to generate many wideband mm-wave beams subject to power and size constraints. The proposed highly integrated approach is attractive for mobile applications including 5G smart devices, the internet of things, mobile robotics, and unmanned aerial vehicles, and other emerging applications focused on mm-waves. In addition to scientific research, the project will ensure that both minority students and female students will be mentored towards careers in mathematics, communications, as well as microwave circuits and systems. Educational materials will be developed for teaching array signal processing, microwave integrated circuit (IC) design, and ultra-high-speed analog signal processing. Principal Investigators (PIs) Madanayake and Mandal will organize a mini-conference to enhance microwave and mm-wave research activities at nearby universities in northeast Ohio. PI Madanayake will collaborate with co-PIs towards mentoring underrepresented students towards careers in Science, Technology, Engineering, and Math (STEM). The proposal team is uniquely placed to promote STEM topics spanning both electrical engineering and mathematics domains. The project will lead to education of the wider community on the importance of cross-disciplinary collaboration. Further, the team will strive to show the importance of learning deeper math topics towards success in technology and engineering careers.A multi-beam array receiver is deeply difficult to realize in IC form due to the underlying complexity of its signal flow graph. In this work, mathematical methods based on the theories of i) sparse factorization of structured complex matrices, and ii) approximate transforms are proposed to solve this problem. The resulting matrices are realized with multi-GHz bandwidths using analog ICs. One of the intellectual contributions is the development of efficient wideband beamformers based on sparse factorizations of delay Vandermonde matrices (DVM). This DVM algorithm solves the longstanding "beam squint" problem, i.e., the fact that the beam direction changes with input frequency, making true wideband operation impossible. Another is the derivation of transform matrices with specified properties that approximate the discrete Fourier transform (DFT). Such approximate transforms are not subjected to the known computational complexity bounds of the exact DFT, and approximate-DFT-based multi-beamformers can in fact be efficiently implemented using current-mode analog ICs. Finally, precision circuit design, digital calibration, built-in self-test, and other methods will be explored for efficiently realizing the proposed multi-beamforming networks in analog IC form.
美国联邦通信委员会认识到无线行业需要探索 28-95 GHz 毫米波 (mm-wave) 频段,这些频段可以获得更宽的带宽,未来的分配可能会达到 100 GHz 以上。毫米波带宽的爆炸式增长开辟了 5G 无线系统在通信、定位、成像和雷达领域的应用。该项目解决了在毫米波频率下生成多个并行无线电“波束”的基本科学和工程挑战。无线电波束是指建立点对点接触以进行无线通信和遥感的定向信道。形成大量此类高带宽无线电波束的能力将极大地提高下一代无线系统的性能。例如,多波束对于实现无线应用爆炸性增长所需的容量、数据速率和地理渗透率的数量级增长至关重要。此外,它们对于发射器和接收器都很重要。 该项目将利用空间傅里叶变换和薄光学透镜之间的类比来获得多个宽带光束。与文献中基于透镜天线的方法不同,该项目将使用平面孔径天线与模拟集成电路相结合,生成许多受功率和尺寸限制的宽带毫米波波束。所提出的高度集成方法对于移动应用具有吸引力,包括 5G 智能设备、物联网、移动机器人和无人机以及其他专注于毫米波的新兴应用。除了科学研究之外,该项目还将确保少数族裔学生和女学生得到数学、通信以及微波电路和系统职业的指导。将开发用于教学阵列信号处理、微波集成电路(IC)设计和超高速模拟信号处理的教材。首席研究员 (PI) Madanayake 和 Mandal 将组织一次小型会议,以加强俄亥俄州东北部附近大学的微波和毫米波研究活动。 PI Madanayake 将与联合 PI 合作,指导代表性不足的学生走向科学、技术、工程和数学 (STEM) 领域的职业生涯。 该提案团队在推广涵盖电气工程和数学领域的 STEM 主题方面具有独特的优势。该项目将引导更广泛的社区了解跨学科合作的重要性。此外,该团队将努力展示学习更深入的数学主题对于技术和工程职业成功的重要性。由于其信号流图的潜在复杂性,多波束阵列接收器很难以 IC 形式实现。在这项工作中,提出了基于 i) 结构化复数矩阵的稀疏分解和 ii) 近似变换理论的数学方法来解决这个问题。由此产生的矩阵是使用模拟 IC 以多 GHz 带宽实现的。其中一项智力贡献是开发了基于延迟范德蒙矩阵 (DVM) 稀疏分解的高效宽带波束形成器。该 DVM 算法解决了长期存在的“波束斜视”问题,即波束方向随输入频率而变化,从而使真正的宽带操作成为不可能。另一个是推导具有近似离散傅立叶变换 (DFT) 的指定属性的变换矩阵。这种近似变换不受精确 DFT 的已知计算复杂度限制,并且基于近似 DFT 的多波束形成器实际上可以使用电流模式模拟 IC 有效地实现。最后,将探索精密电路设计、数字校准、内置自测试等方法,以有效地以模拟 IC 形式实现所提出的多波束形成网络。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
General Framework for Array Noise Analysis and Noise Performance of a Two-Element Interferometer with a Mutual-Coupling Canceler
带互耦消除器的二元干涉仪阵列噪声分析和噪声性能的通用框架
- DOI:10.1109/tap.2022.3165540
- 发表时间:2022
- 期刊:
- 影响因子:5.7
- 作者:Belostotski, Leonid;Sutinjo, Adrian;Subrahmanyan, Ravi;Mandal, Soumyajit;Madanayake, Arjuna
- 通讯作者:Madanayake, Arjuna
Aperture-Array & Lens+FPA Multi-Beam Digital Receivers at 28 GHz on Xilinx ZCU 1275 RF SoC
孔径阵列
- DOI:10.1109/ims30576.2020.9224027
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Pulipati, Sravan;Ariyarathna, Viduneth;Khan, Md Rayhan;Bhardwaj, Shubhendu;Madanayake, Arjuna
- 通讯作者:Madanayake, Arjuna
Physics-Aware Processing of Rotational Micro-Doppler Signatures for DBN-Based UAS Classification Radar
- DOI:10.1109/rfid49298.2020.9244873
- 发表时间:2020-09
- 期刊:
- 影响因子:0
- 作者:A. Madanayake;G. Mendis;V. Ariyarathna;S. Pulipati;Tharindu Randeny;S. Bhardwaj;Xin Wang;S. Mandal;Jin Wei
- 通讯作者:A. Madanayake;G. Mendis;V. Ariyarathna;S. Pulipati;Tharindu Randeny;S. Bhardwaj;Xin Wang;S. Mandal;Jin Wei
Analog Approximate-FFT 8/16-Beam Algorithms, Architectures and CMOS Circuits for 5G Beamforming MIMO Transceivers
- DOI:10.1109/jetcas.2018.2832177
- 发表时间:2018-05
- 期刊:
- 影响因子:4.6
- 作者:V. Ariyarathna;A. Madanayake;Xinyao Tang;D. Coelho;R. Cintra;L. Belostotski;S. Mandal;T. Rappaport
- 通讯作者:V. Ariyarathna;A. Madanayake;Xinyao Tang;D. Coelho;R. Cintra;L. Belostotski;S. Mandal;T. Rappaport
Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond
- DOI:10.1109/access.2019.2921522
- 发表时间:2019-01-01
- 期刊:
- 影响因子:3.9
- 作者:Rappaport, Theodore S.;Xing, Yunchou;Trichopoulos, Georgios C.
- 通讯作者:Trichopoulos, Georgios C.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Habarakada Madanayake其他文献
Habarakada Madanayake的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Habarakada Madanayake', 18)}}的其他基金
Collaborative Research: SWIFT: AI-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning
合作研究:SWIFT:基于人工智能的传感通过频谱适应和终身学习提高弹性
- 批准号:
2229471 - 财政年份:2023
- 资助金额:
$ 18.84万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
- 批准号:
2329012 - 财政年份:2023
- 资助金额:
$ 18.84万 - 项目类别:
Continuing Grant
I-Corps: NextG Wireless Communications
I-Corps:NextG 无线通信
- 批准号:
2243346 - 财政年份:2022
- 资助金额:
$ 18.84万 - 项目类别:
Standard Grant
Collaborative Research: Distributed Electro-Mechanical Transmitters for Adaptive and Power-Efficient Wireless Communications in RF-Denied Environments
合作研究:分布式机电发射器,用于射频干扰环境中的自适应和高能效无线通信
- 批准号:
1904382 - 财政年份:2019
- 资助金额:
$ 18.84万 - 项目类别:
Standard Grant
SpecEES: Collaborative Research: Spatially Oversampled Dense Multi-Beam Millimeter-Wave Communications for Exponentially Increased Energy-Efficiency
SpecEES:协作研究:空间过采样密集多波束毫米波通信,以指数方式提高能源效率
- 批准号:
1854798 - 财政年份:2018
- 资助金额:
$ 18.84万 - 项目类别:
Standard Grant
Collaborative Research: Wideband Multi-Beam Antenna Arrays: Low-Complexity Algorithms and Analog-CMOS Implementations
合作研究:宽带多波束天线阵列:低复杂度算法和模拟 CMOS 实现
- 批准号:
1711625 - 财政年份:2017
- 资助金额:
$ 18.84万 - 项目类别:
Standard Grant
SpecEES: Collaborative Research: Spatially Oversampled Dense Multi-Beam Millimeter-Wave Communications for Exponentially Increased Energy-Efficiency
SpecEES:协作研究:空间过采样密集多波束毫米波通信,以指数方式提高能源效率
- 批准号:
1731722 - 财政年份:2017
- 资助金额:
$ 18.84万 - 项目类别:
Standard Grant
CI-P: Collaborative Project: Planning for Community Infrastructure to Support Research for Simulating Complex Systems
CI-P:合作项目:规划社区基础设施以支持复杂系统仿真研究
- 批准号:
1629903 - 财政年份:2016
- 资助金额:
$ 18.84万 - 项目类别:
Standard Grant
Collaborative Research: Electronically-Scanned Wideband Digital Aperture Antenna Arrays using Multi-Dimensional Space-Time Circuit-Network Resonance: Theory and Hardware
合作研究:使用多维时空电路网络谐振的电子扫描宽带数字孔径天线阵列:理论和硬件
- 批准号:
1408361 - 财政年份:2014
- 资助金额:
$ 18.84万 - 项目类别:
Standard Grant
EARS: Collaborative Research: Enhancing Spectral Access via Directional Spectrum Sensing Employing 3D Cone Filterbanks: Interdisciplinary Algorithms and Prototypes
EARS:协作研究:使用 3D 锥形滤波器组通过定向频谱传感增强频谱访问:跨学科算法和原型
- 批准号:
1247940 - 财政年份:2012
- 资助金额:
$ 18.84万 - 项目类别:
Standard Grant
相似国自然基金
面向宽带数字射频芯片的映射调制/解调关键技术研究
- 批准号:62374061
- 批准年份:2023
- 资助金额:55 万元
- 项目类别:面上项目
随机时变相位低相干宽带激光抑制受激拉曼散射的动理学研究
- 批准号:12305265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于腔内相干完美吸收的宽带双通道全光开关实验研究
- 批准号:12304292
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
径向偏振超快激光的高增益宽带啁啾脉冲放大技术研究
- 批准号:62375184
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
磁性二维Fe3GeTe2材料的液相剥离及其超宽带光电探测性能研究
- 批准号:52301299
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
- 批准号:
2329014 - 财政年份:2023
- 资助金额:
$ 18.84万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
- 批准号:
2329012 - 财政年份:2023
- 资助金额:
$ 18.84万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
- 批准号:
2329015 - 财政年份:2023
- 资助金额:
$ 18.84万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
- 批准号:
2329013 - 财政年份:2023
- 资助金额:
$ 18.84万 - 项目类别:
Continuing Grant
Collaborative Research:SWIFT:Ultra Wideband Flexible MIMO Radios for Energy Efficient Secure Spectrum Sharing
合作研究:SWIFT:超宽带灵活 MIMO 无线电实现节能安全频谱共享
- 批准号:
2128567 - 财政年份:2021
- 资助金额:
$ 18.84万 - 项目类别:
Standard Grant