Infrared Quantum Materials Based on Scandium-Containing III-Nitrides

基于含钪III族氮化物的红外量子材料

基本信息

  • 批准号:
    2004462
  • 负责人:
  • 金额:
    $ 43.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Nontechnical descriptionThis project is developing new technologically useful materials by incorporating a rarely used metal (scandium) into traditional semiconductors. This combination has unique light emitting and detecting capabilities with broad benefits to society including novel devices for medical imaging and solar cells. The research aims to understand, control, and adjust the atomic arrangement of these new materials to maximize light absorption in the invisible infrared range. The project also explores the effect of atomic imperfections in the semiconductors on the movement of free electrical charge. This program also links the research with the educational goal of increasing learning opportunities for students of all ages, inside and outside the traditional classroom. The investigators and students involved in this project participate in outreach activities organized either in-house or at local schools to increase exposure of K-12 students and the general public to modern scientific topics in materials science in a fun, project-oriented environment. Lesson plans are designed and experimental demonstrations of basic optical properties of matter are built for the middle-school summer camp “Physics Inside Out” at Purdue. To maximize impact at the high-school level, the activities engage teachers in summer research. In particular, the teachers are developing inquiry-based lesson plans incorporating concepts related to quantum science into the high-school curriculum to fulfill Indiana standards. The researchers also organize a hands-on workshop with take-home materials for the annual meeting of the Hoosier Association of Science Teachers.Technical descriptionThis project sets the foundation for a novel type of infrared materials using optical transitions between quantized states in the conduction band of nitride semiconductors incorporating the group IIIB transition-metal scandium. These semiconductors have unique electronic properties that make them suitable for advancing the functionality of semiconductor optoelectronic devices into spectral ranges currently inaccessible with other material systems. The innovative approach employs an emergent optoelectronic material, the wurtzite phase of Sc-Al-nitride that is lattice-matched to GaN, to mitigate strain-related issues that have impeded progress of nitride optoelectronics into the infrared so far. The research effort is interdisciplinary and involves material design and growth, plus structural and optical characterization. Polar and nonpolar ScAlN/GaN heterostructures are designed using extensive band-structure calculations. To achieve maximum material purity and monolayer-control of the atomic structure, the Sc-containing materials are grown by plasma-assisted molecular beam epitaxy on high quality quasi-bulk GaN substrates. The decisive task is to identify the epitaxial growth conditions that satisfy the most stringent requirements imposed by near-infrared optical processes. In order to correlate microstructure with optical and electronic properties, the structure of the semiconductor materials is comprehensively characterized with high-resolution x-ray diffraction, advanced transmission electron microscopy, and atom probe tomography. The band structure of the materials is probed experimentally with Fourier transform infrared spectroscopy and photoluminescence. The growth of these emergent materials advances the state-of-the-art in transition-metal nitride epitaxy. Uncharted mechanisms of material growth on polar and non-polar GaN substrates are scrutinized. This research also contributes to the knowledge base of the physics of infrared optical transitions. These infrared materials are expected to enable optoelectronics with functionality unmatched by current technologies. Moreover, the novel class of Sc-containing semiconductors benefit other applications such as high-electron mobility transistors, ultraviolet, thermoelectric, piezoelectric, and plasmonic devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述该项目正在通过将一种很少使用的金属(钪)融入到传统半导体中来开发新的技术有用材料,这种组合具有独特的发光和检测能力,可为社会带来广泛的好处,包括用于医学成像和太阳能电池的新型设备。了解、控制和调整这些新材料的原子排列,以最大限度地提高不可见红外范围内的光吸收。该项目还探讨了半导体中的原子缺陷对自由电荷运动的影响。教育目标是增加传统课堂内外各年龄段学生的学习机会 参与该项目的调查人员和学生参加内部或当地学校组织的外展活动,以增加 K-12 学生的接触机会。在普渡大学的中学夏令营“物理透彻”中,我们在一个有趣的、以项目为导向的环境中设计了课程计划,并建立了物质基本光学特性的实验演示。最大限度地提高高中水平的影响,这些活动吸引了教师特别是在夏季研究中,教师们正在制定基于探究的课程计划,将与量子科学相关的概念纳入高中课程,以达到印第安纳州的标准。研究人员还组织了一个实践研讨会,并提供了年度材料。胡西尔科学教师协会会议。技术描述该项目为利用包含 IIIB 族过渡金属钪的氮化物半导体导带中的量子态之间的光学跃迁的新型红外材料奠定了基础。这些半导体具有独特的特性。这种电子特性使其适合将半导体光电器件的功能提升到目前其他材料系统无法达到的光谱范围。这种创新方法采用了一种新兴的光电材料,即与 GaN 晶格匹配的 Sc-Al 氮化物的纤锌矿相。缓解迄今为止阻碍氮化物光电子学在红外领域取得进展的应变相关问题。这项研究工作是跨学科的,涉及材料设计和生长。极性和非极性 ScAlN/GaN 异质结构是通过广泛的能带结构计算来设计的,为了实现最大的材料纯度和原子结构的单层控制,含 Sc 材料通过等离子体辅助分子束外延生长。决定性的任务是确定满足近红外光学工艺最严格要求的外延生长条件,以便将微结构与光学和电子相关联。通过高分辨率 X 射线衍射、先进的透射电子显微镜和原子探针断层扫描技术对半导体材料的结构进行了全面表征,并通过傅里叶变换红外光谱和光致发光对材料的能带结构进行了实验探测。这些新兴材料推动了过渡金属氮化物外延技术的发展,极性和非极性 GaN 衬底上材料生长的未知机制。这项研究还有助于建立红外光学跃迁物理学的知识库,这些红外材料有望实现具有当前技术无法比拟的功能的光电子学,并且有利于其他应用,例如高光电子学。电子迁移晶体管、紫外线、热电、压电和等离激元器件。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势进行评估,认为值得支持以及更广泛的影响审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Elimination of remnant phases in low-temperature growth of wurtzite ScAlN by molecular-beam epitaxy
  • DOI:
    10.1063/5.0118075
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Brandon Dzuba;Trang Nguyen;Amrita Sen;R. Diaz;Megha Dubey;M. Bachhav;J. Wharry;M. Manfra;O. Malis
  • 通讯作者:
    Brandon Dzuba;Trang Nguyen;Amrita Sen;R. Diaz;Megha Dubey;M. Bachhav;J. Wharry;M. Manfra;O. Malis
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Oana Malis其他文献

Oana Malis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Oana Malis', 18)}}的其他基金

Infrared photonics using ferroelectric scandium-aluminum nitride semiconductors
使用铁电钪铝氮化物半导体的红外光子学
  • 批准号:
    2414283
  • 财政年份:
    2024
  • 资助金额:
    $ 43.19万
  • 项目类别:
    Continuing Grant
Novel Infrared Optical Materials Based on III-Nitride Semiconductors: Growth, Structure and Properties
基于III族氮化物半导体的新型红外光学材料:生长、结构和性能
  • 批准号:
    1610893
  • 财政年份:
    2016
  • 资助金额:
    $ 43.19万
  • 项目类别:
    Continuing Grant
CAREER: Nonpolar vertical-transport III-nitride devices for near-infrared applications
职业:用于近红外应用的非极性垂直传输 III 族氮化物器件
  • 批准号:
    1253720
  • 财政年份:
    2013
  • 资助金额:
    $ 43.19万
  • 项目类别:
    Standard Grant
Global Strain-Free III-Nitride Heterostructures: Growth, Structure and Near-Infrared Optical Properties
全局无应变 III 族氮化物异质结构:生长、结构和近红外光学性质
  • 批准号:
    1206919
  • 财政年份:
    2012
  • 资助金额:
    $ 43.19万
  • 项目类别:
    Continuing Grant
Mid-infrared Semiconductor Lasers Based on Intersubband Transitions in the Valence Band of GaAs/AlAs Quantum Cascade Nanostructures
基于GaAs/AlAs量子级联纳米结构价带子带间跃迁的中红外半导体激光器
  • 批准号:
    0935899
  • 财政年份:
    2009
  • 资助金额:
    $ 43.19万
  • 项目类别:
    Standard Grant
Mid-infrared Semiconductor Lasers Based on Intersubband Transitions in the Valence Band of GaAs/AlAs Quantum Cascade Nanostructures
基于GaAs/AlAs量子级联纳米结构价带子带间跃迁的中红外半导体激光器
  • 批准号:
    0725384
  • 财政年份:
    2007
  • 资助金额:
    $ 43.19万
  • 项目类别:
    Standard Grant

相似国自然基金

利用斑马鱼模型研究量子点纳米材料暴露诱发视觉发育毒性及机制
  • 批准号:
    22376174
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
具有光控电导量子化特性的光电忆阻材料及类视觉神经形态器件研究
  • 批准号:
    52372137
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
秸秆基碳量子点网络构筑及其聚乳酸复合膜材料的界面强化机理研究
  • 批准号:
    32301722
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
二维量子材料异质结中摩尔超晶格重构和摩尔激子相互作用的高压调控
  • 批准号:
    12304012
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于二维材料中自旋色心的量子传感
  • 批准号:
    12304546
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Next Generation Quantum Detector Utilising Engineered Materials for Short-wave Infrared Applications
利用工程材料进行短波红外应用的下一代量子探测器
  • 批准号:
    EP/W028166/1
  • 财政年份:
    2023
  • 资助金额:
    $ 43.19万
  • 项目类别:
    Fellowship
Development of novel quantum materials and their ultrafast characterization using advanced near- and mid-infrared spectroscopy
使用先进的近红外和中红外光谱开发新型量子材料及其超快表征
  • 批准号:
    569167-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 43.19万
  • 项目类别:
    Alliance Grants
Designing the next generation of highly selective sorbent materials for remediation of target inorganic contaminants in aqueous systems
设计下一代高选择性吸附剂材料,用于修复水系统中的目标无机污染物
  • 批准号:
    10332732
  • 财政年份:
    2020
  • 资助金额:
    $ 43.19万
  • 项目类别:
Study on unconventional infrared photovoltaics using quantum materials
利用量子材料的非常规红外光伏发电研究
  • 批准号:
    20H02605
  • 财政年份:
    2020
  • 资助金额:
    $ 43.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Designing the next generation of highly selective sorbent materials for remediation of target inorganic contaminants in aqueous systems
设计下一代高选择性吸附剂材料,用于修复水系统中的目标无机污染物
  • 批准号:
    10112929
  • 财政年份:
    2020
  • 资助金额:
    $ 43.19万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了