志村多様体の幾何を用いたL関数の特殊値の研究

使用Shimura流形几何研究L函数的特殊值

基本信息

  • 批准号:
    23K03038
  • 负责人:
  • 金额:
    $ 3.08万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2023
  • 资助国家:
    日本
  • 起止时间:
    2023-04-01 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

千田 雅隆其他文献

A p-adic interpolation of generalized Heegner cycles and integral Perrin-Riou tiwsts
广义 Heegner 循环和积分 Perrin-Riou tiwsts 的 p 进插值
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kobayashi;Shinichi;小林 真一;落合 理;千田 雅隆;Shinichi KOBAYASHI
  • 通讯作者:
    Shinichi KOBAYASHI
Congruences between endoscopic representations and non-endoscopic representationsofGSp(4)modulo adjoint L-values
GSP(4) 模伴随 L 值的内窥镜表示和非内窥镜表示之间的一致性
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kobayashi;Shinichi;小林 真一;落合 理;千田 雅隆;Shinichi KOBAYASHI;小林真一;小林真一;太田和惟;太田和惟;Noriyuki Otsubo;Noriyuki Otsubo;Noriyuki Otsubo;Noriyuki Otsubo;Masataka Chida;千田雅隆;Masataka Chida;千田雅隆;Masataka Chida;Masataka Chida;千田雅隆;Tadashi Ochiai;落合理;Tadashi Ochiai
  • 通讯作者:
    Tadashi Ochiai
Birch and Swinnerton-Dyer予想と反円分岩澤理論
伯奇和斯温纳顿-戴尔猜想与反圆岩泽理论
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kobayashi;Shinichi;小林 真一;落合 理;千田 雅隆;Shinichi KOBAYASHI;小林真一
  • 通讯作者:
    小林真一
Anticyclotomic Iwasawa theory and integral Perrin-Riou twists
反圆剖分 Iwasawa 理论和积分 Perrin-Riou 扭曲
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kobayashi;Shinichi;小林 真一;落合 理;千田 雅隆;Shinichi KOBAYASHI;小林真一;小林真一;太田和惟;太田和惟;Noriyuki Otsubo;Noriyuki Otsubo;Noriyuki Otsubo;Noriyuki Otsubo;Masataka Chida;千田雅隆;Masataka Chida;千田雅隆;Masataka Chida;Masataka Chida;千田雅隆;Tadashi Ochiai;落合理;Tadashi Ochiai;落合理;Masataka Chida;Noriyuki Otsubo;Shinichi Kobayashi;Shinichi Kobayashi
  • 通讯作者:
    Shinichi Kobayashi
Iwasawa theory for ideal class groups / Iwasawa theory for elliptic curves
理想阶级群体的岩泽理论/椭圆曲线的岩泽理论
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kobayashi;Shinichi;小林 真一;落合 理;千田 雅隆;Shinichi KOBAYASHI;小林真一;小林真一;太田和惟;太田和惟;Noriyuki Otsubo;Noriyuki Otsubo;Noriyuki Otsubo;Noriyuki Otsubo;Masataka Chida;千田雅隆;Masataka Chida;千田雅隆;Masataka Chida;Masataka Chida;千田雅隆;Tadashi Ochiai;落合理;Tadashi Ochiai;落合理;Masataka Chida;Noriyuki Otsubo;Shinichi Kobayashi;Shinichi Kobayashi;Kazuto Ota;Masataka Chida;Tadashi Ochiai;Tadashi Ochiai;Shinichi Kobayashi;Kazuto Ota;Kazuto Ota;Kazuto Ota;Tadashi Ochiai;Tadashi Ochiai;Tadashi Ochiai;Tadashi Ochiai
  • 通讯作者:
    Tadashi Ochiai

千田 雅隆的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('千田 雅隆', 18)}}的其他基金

保型形式に対する玉河数予想と岩澤理論の研究
玉川数猜想和岩泽自守形式理论研究
  • 批准号:
    08J01079
  • 财政年份:
    2008
  • 资助金额:
    $ 3.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
保型L関数の特殊値と志村曲線の研究
自守L函数和Shimura曲线特殊值的研究
  • 批准号:
    19840004
  • 财政年份:
    2007
  • 资助金额:
    $ 3.08万
  • 项目类别:
    Grant-in-Aid for Young Scientists (Start-up)
楕円曲線のツイストとそのL関数の研究
椭圆曲线扭曲及其L函数的研究
  • 批准号:
    04J03364
  • 财政年份:
    2004
  • 资助金额:
    $ 3.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows

相似国自然基金

与Borcherds提升相关的若干数论课题研究
  • 批准号:
    11901586
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Kudla纲领和Gross-Zagier公式
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

保型形式の周期とp進L関数
自守形式和 p 进 L 函数的周期
  • 批准号:
    23K03055
  • 财政年份:
    2023
  • 资助金额:
    $ 3.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
パーフェクトイド空間を用いたGross-Zagier型公式の研究
基于完美空间的Gross-Zagier型公式研究
  • 批准号:
    19K21829
  • 财政年份:
    2019
  • 资助金额:
    $ 3.08万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
A generalization of arithmetic Gan-Gross-Prasad conjecture and its p-adic analogue
算术 Gan-Gross-Prasad 猜想及其 p 进模拟的推广
  • 批准号:
    18K03202
  • 财政年份:
    2018
  • 资助金额:
    $ 3.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of deformations of Galois representations and special values of p-adic L-functions
伽罗瓦表示的变形和 p 进 L 函数的特殊值的研究
  • 批准号:
    15K17509
  • 财政年份:
    2015
  • 资助金额:
    $ 3.08万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
A p-adic approach to the special value formula of L-functions
L-函数特殊值公式的 p-adic 方法
  • 批准号:
    25707001
  • 财政年份:
    2013
  • 资助金额:
    $ 3.08万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了