Global analysis of dispersion and resonance of nonlinear waves
非线性波色散和共振的全局分析
基本信息
- 批准号:21740095
- 负责人:
- 金额:$ 2.75万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Young Scientists (B)
- 财政年份:2009
- 资助国家:日本
- 起止时间:2009 至 2012
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
I constructed a theory to determine space-time behavior of general solutions for partial differential equations describing nonlinear waves, from the initial data and topological information on the solution in the phase space, and completely classified space-time dynamics up to an energy level slightly above that of the ground state. It is a mathematically rigorous description, based solely on the equation, of the mechanism of scattering, soliton and blow-up, which are typical behavior of nonlinear waves, and of transitions among them.
我构建了一个理论,根据相空间中解的初始数据和拓扑信息,确定描述非线性波的偏微分方程通解的时空行为,并将时空动力学完全分类到略高于其能量水平的基态。它是仅基于方程的数学上严格的描述,对散射、孤子和爆炸的机制(非线性波的典型行为)以及它们之间的跃迁进行了描述。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Global dynamicsbeyond the ground energy for thefocusing nonlinear Klein-Gordonequation
聚焦非线性克莱因-戈登方程的超越地面能量的全球动力学
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Stephen Gustafson;Kenji Nakanishi;Tai-Peng Tsai;奥山裕介;K. Ito;Kenji Nakanishi;奥山裕介;Kenji Nakanishi;K. Ito;Kenji Nakanishi;奥山裕介;K. Ito;Kenji Nakanishi;K. Ito;Kenji Nakanishi;K. Ito;Kenji Nakanishi;K. Ito;Kenji Nakanishi;K. Ito;Kenji Nakanishi;K. Ito;Kenji Nakanishi;Kenji Nakanishi
- 通讯作者:Kenji Nakanishi
Exponential decay for damped semilinear wave equation in the critical and the supercritical cases
临界和超临界情况下阻尼半线性波动方程的指数衰减
- DOI:
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:Stephen Gustafson;Kenji Nakanishi;Tai-Peng Tsai;奥山裕介;K. Ito;Kenji Nakanishi;奥山裕介;Kenji Nakanishi;K. Ito;Kenji Nakanishi;奥山裕介;K. Ito;Kenji Nakanishi;K. Ito;Kenji Nakanishi;K. Ito;Kenji Nakanishi;K. Ito;Kenji Nakanishi;K. Ito;Kenji Nakanishi;K. Ito;Kenji Nakanishi;Kenji Nakanishi;Kenji Nakanishi;Kenji Nakanishi;Kenji Nakanishi;Kenji Nakanishi;Kenji Nakanishi;Kenji Nakanishi;Kenji Nakanishi;Kenji Nakanishi;Kenji Nakanishi;Kenji Nakanishi;Kenji Nakanishi
- 通讯作者:Kenji Nakanishi
Invariant Manifolds and Dispersive Hamiltonian Evolution Equations
- DOI:10.4171/095
- 发表时间:2011-09
- 期刊:
- 影响因子:0
- 作者:K. Nakanishi;W. Schlag
- 通讯作者:K. Nakanishi;W. Schlag
Global dynamics of the 3D Zakharov system
3D Zakharov 系统的全局动力学
- DOI:
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Stephen Gustafson;Kenji Nakanishi;Tai-Peng Tsai;奥山裕介;K. Ito;Kenji Nakanishi;奥山裕介;Kenji Nakanishi;K. Ito;Kenji Nakanishi;奥山裕介;K. Ito;Kenji Nakanishi;K. Ito;Kenji Nakanishi;K. Ito;Kenji Nakanishi
- 通讯作者:Kenji Nakanishi
Global dynamics beyond the ground state energy for nonlinear Klein-Gordon equation
非线性 Klein-Gordon 方程的基态能量之外的全局动力学
- DOI:
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:Stephen Gustafson;Kenji Nakanishi;Tai-Peng Tsai;奥山裕介;K. Ito;Kenji Nakanishi;奥山裕介;Kenji Nakanishi;K. Ito;Kenji Nakanishi;奥山裕介;K. Ito;Kenji Nakanishi;K. Ito;Kenji Nakanishi;K. Ito;Kenji Nakanishi;K. Ito;Kenji Nakanishi;K. Ito;Kenji Nakanishi;K. Ito;Kenji Nakanishi;Kenji Nakanishi;Kenji Nakanishi;Kenji Nakanishi;Kenji Nakanishi
- 通讯作者:Kenji Nakanishi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NAKANISHI Kenji其他文献
NAKANISHI Kenji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NAKANISHI Kenji', 18)}}的其他基金
A basic study of Heian literature, NEZAME MONOGATARI
平安文学基础研究《NEZAME MONOGATARI》
- 批准号:
19K00335 - 财政年份:2019
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Protective effect of granular leukocytes on host defense against intestinal nematode infection
颗粒白细胞对宿主防御肠道线虫感染的保护作用
- 批准号:
23249022 - 财政年份:2011
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Study on Induction of Th2 response and allergic inflammation by basophils
嗜碱性粒细胞诱导Th2反应和过敏性炎症的研究
- 批准号:
20390145 - 财政年份:2008
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Global dispersion of nonlinear waves
非线性波的全局色散
- 批准号:
18740072 - 财政年份:2006
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Pathological Analysis of IL-18-dependently induced Atopic dermatitis mediated by Pattern Recognition Receptor Activation.
模式识别受体激活介导的 IL-18 依赖性诱导特应性皮炎的病理分析。
- 批准号:
14021126 - 财政年份:2002
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
INVESTIGATION OF IL-18-INDUCED IgE RESPONSE FOCUSING ON ITS MyD88-INDEPENDENCY AND IL-4-DEPENDENCY
IL-18 诱导的 IgE 反应的研究,重点关注其 MyD88 独立性和 IL-4 依赖性
- 批准号:
13470074 - 财政年份:2001
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Therapeutic approach to allergic disorders by focusing on Caspase-1/IL18.
以 Caspase-1/IL18 为重点的过敏性疾病治疗方法。
- 批准号:
11557039 - 财政年份:1999
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
MOLECULARANALYSIS ENDOTOXIN-INDUCED-DISEASES
分子分析内毒素引起的疾病
- 批准号:
10470071 - 财政年份:1998
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Therapeutic trial for allergic disorders and infectious disease with IL-18.
IL-18 治疗过敏性疾病和传染病的试验。
- 批准号:
09557031 - 财政年份:1997
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A unique approach for the treatment of allergic disorders with new cytokine IGIF.
使用新细胞因子 IGIF 治疗过敏性疾病的独特方法。
- 批准号:
08670542 - 财政年份:1996
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
燃焼と流体の大域ダイナミクス解析
燃烧和流体的全局动力学分析
- 批准号:
21K13821 - 财政年份:2021
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
調和解析における実関数論の方法とその応用
调和分析中的实函数理论方法及其应用
- 批准号:
20H01815 - 财政年份:2020
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
仮似変分発展方程式と特異最適制御問題の新展開と構造解析
伪变分演化方程与奇异最优控制问题的新进展及结构分析
- 批准号:
20K03665 - 财政年份:2020
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Modern Mathematical Analysis for the Fluid Dynamics
流体动力学的现代数学分析
- 批准号:
18KK0072 - 财政年份:2019
- 资助金额:
$ 2.75万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Analysis on nonlinear diffusion and dynamic singular structure
非线性扩散与动态奇异结构分析
- 批准号:
19H00639 - 财政年份:2019
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (A)