ルート系の組合せ論と関連した対数的ベクトル場の幾何学

与根系统组合相关的对数向量场的几何

基本信息

  • 批准号:
    04J00658
  • 负责人:
  • 金额:
    $ 1.22万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2005
  • 项目状态:
    已结题

项目摘要

昨年度に引き続き、実超平面配置の補集合の極小セル分割の構造を調べた。基本群の新しい表示や、局所系係数のchain complexの境界写像を、chamberのトポロジーを使って記述することに成功した。この時点で論文としてまとめ、専門誌に投稿した。これらの成果の具体的な応用は今後の課題である。A2型ルート系に付随した、ある種のアフィン直線配置の続に対して、その特性多項式の変化が、非常に単純な規則にしたがっていることを観察した。筆者はこの現象の背後に、対数的ベクトル場の幾何学的な性質があると考え、「3-shift問題」を定式化した。計算機(Macaulay)による多くの実験はこの予想を支持しており、またK.Saitoのホッジフィルトレーション、平坦構造の理論とのアナロジーなども観察されている。この問題は一般のルート系に対しても、「h-shift問題」(ただしhはコクセター数)として定式化できるが、現時点ではA2の場合を証明することが目標である。筆者は最近、モース関数の勾配流により、chamberとログ微分形式を結びつけるアイデアを得た。これに基づいて、カレントによる平坦接続を構成した。このカレント接続のモノドロミーは、従来よく研究されてきたKZ型平坦接続のモノドロミーと(up to conjugateで)「同等」であり、かつモノドロミーが指数写像だけで具体的に書けるという利点を持つ。まだ実験段階であるが、気補群の群論的性質の解明、補集合の有理ホモトピー型の研究への応用が期待される。
从去年开始,我们以实际的超级平面布置研究了互补集的超小细胞分裂的结构。我们已经成功编写了基本组的新表示形式,并使用室拓扑结构为局部系数的链络合物的边界图。在这一点上,它是作为论文编译的,并提交给专业期刊。这些结果的具体应用将是未来的挑战。我们观察到,对于与A2类型根系相关的某些仿射线性排列,其特征多项式的变化遵循一个非常简单的规则。作者认为对数矢量场的几何特性是这种现象的背后,并提出了“ 3档问题”。也观察到了许多计算机实验(Macaulay)支持这一预测,并且还观察到K. Saito的Hodge过滤以及与平坦结构理论的类比。此问题也可以被提出为“ H迁移问题”(其中H是Coxeter编号),但是当前的目标是证明A2的情况。最近,我想到了将腔室和对数差分形式与MOHS函数的梯度流相结合的想法。基于此,构建了当前的平坦连接。这种当前的连接单片与以前经过精心研究的KZ型平坦连接的单构型“等效”,并且具有单独使用指数映射专门编写的单构型的优势。尽管它仍处于实验阶段,但预计它将阐明Qi组的组理论特性,并将其应用于互补集的合理同型类型的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

吉永 正彦其他文献

20・12 面体配置と関連する二重被覆空間
与 20/12 面体排列相关的双覆盖空间
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    吉永 正彦;石橋 卓;菅原 朔見
  • 通讯作者:
    菅原 朔見
Milnor fibers of hyperplane arrangements
超平面排列的细纤维
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    吉永 正彦;石橋 卓;菅原 朔見;吉永正彦;吉永正彦
  • 通讯作者:
    吉永正彦
Old and new results on Catalan arrangements
加泰罗尼亚安排的新旧结果
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    吉永 正彦;石橋 卓;菅原 朔見;吉永正彦;吉永正彦;吉永正彦;吉永正彦;吉永正彦;吉永正彦
  • 通讯作者:
    吉永正彦
Edelman-Reiner conjecture revisited
重新审视埃德尔曼-赖纳猜想
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    吉永 正彦;石橋 卓;菅原 朔見;吉永正彦;吉永正彦;吉永正彦;吉永正彦;吉永正彦;吉永正彦;吉永正彦
  • 通讯作者:
    吉永正彦
Vassiliev filtration and Varchenko-Gelfand filtration
Vassiliev 过滤和 Varchenko-Gelfand 过滤
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    吉永 正彦;石橋 卓;菅原 朔見;吉永正彦
  • 通讯作者:
    吉永正彦

吉永 正彦的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('吉永 正彦', 18)}}的其他基金

Discrete structures related to hyperplane arrangements, generalization, deepening, and applications
与超平面排列、泛化、深化和应用相关的离散结构
  • 批准号:
    23H00081
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Study of holonomic constants using algebraic analysis
使用代数分析研究完整常数
  • 批准号:
    22K18668
  • 财政年份:
    2022
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Commutative algebraic study of hyperplane arrangements
超平面排列的交换代数研究
  • 批准号:
    18F18756
  • 财政年份:
    2018
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
超平面配置の認容変形と寺尾予想
超平面构型的容许变形和寺尾猜想
  • 批准号:
    12F02787
  • 财政年份:
    2012
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows

相似海外基金

超平面配置の対数的ベクトル場の総合的研究
超平面构形中对数向量场的综合研究
  • 批准号:
    23K20788
  • 财政年份:
    2024
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Discrete structures related to hyperplane arrangements, generalization, deepening, and applications
与超平面排列、泛化、深化和应用相关的离散结构
  • 批准号:
    23H00081
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Fusion of enumerative and algebraic geometry and exploration of quasi-geometric invariants
枚举几何与代数几何的融合以及准几何不变量的探索
  • 批准号:
    23K17298
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Research of logarithmic vector fields of hyperplane arrangements
超平面排列对数向量场的研究
  • 批准号:
    21H00975
  • 财政年份:
    2021
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Fusion of algebra, geometry and combinatorics based on the roots of Poincare polynomials of hyperplane arrangements
基于超平面排列庞加莱多项式根的代数、几何和组合数学的融合
  • 批准号:
    20K20880
  • 财政年份:
    2020
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了