Differential equations and theory of submanifolds

微分方程和子流形理论

基本信息

项目摘要

I proved the homogeneity of isoparametric hypersurfaces with six principal curvatures with multiplicity two, which I had been tackling for several years. I also got a new proof of Dorfmeister-Neher's theorem which treats the multiplicity one case, in a unified manner.Investigating the resulted homogeneous hypersurfaces, I got the following As was known in the case of multiplicity one, the hypersurfaces with 6 principal curvatures are given as a fibration over those with 3 principal curvature, where the fibers aret otally geodesic spheres. In the case of multiplicity two, the fiber dimension is six, while in the case of multiplicity one, this is three. Discovery of the fibration structure is an extension of our former results on the degenerate Gauss mapping which was done with G. Ishikawa and M. Kimura.Moreover, using the fact that the family of isoparametric hypersurfaces fill the ambient space, we get an interesting relation between 13-dimensional sphere and 7-dimensional sphere. Furthermore, using that these hypersurfaces are given as orbits of the exceptional group G_2, we can show that there exists a metric on S^7-CP^2 of which holonomy group is G_2. From this, a real open version of Calabi conjecture will be considered, i.e., when a compact Riemannian manifolds with positive Ricci curvature from which a certain part removed, admits a metric with G_2 holonomy? In this way, hypersurfaces obtained as G_2 orbits suggest us very important and interesting problems.
我证明了具有六个主曲率、重数为二的等参超曲面的同质性,多年来我一直在解决这个问题。我还得到了 Dorfmeister-Neher 定理的一个新证明,该定理以统一的方式处理重数一的情况。研究所得的齐次超曲面,我得到以下结果正如在重数一的情况下已知的那样,具有 6 个主曲率的超曲面是给出了具有 3 个主曲率的纤维的纤维化,其中纤维是完全测地线球体。在多重性为二的情况下,纤维尺寸为六,而在多重性为一的情况下,纤维尺寸为三。纤维化结构的发现是我们之前与 G. Ishikawa 和 M. Kimura 合作完成的简并高斯映射结果的延伸。此外,利用等参超曲面族填充周围空间的事实,我们得到了一个有趣的关系介于13维球体和7维球体之间。此外,利用这些超曲面作为例外群G_2的轨道,我们可以证明S^7-CP^2上存在一个度量,其完整群为G_2。由此,将考虑卡拉比猜想的真正开放版本,即,当一个具有正 Ricci 曲率的紧致黎曼流形从中删除某一部分时,是否承认具有 G_2 完整性的度量?这样,作为G_2轨道获得的超曲面向我们提出了非常重要且有趣的问题。

项目成果

期刊论文数量(105)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
G.Ishikawa: "Submanifolds with Degenerate Gauss Mappings"Advanced Studies Pure Math. 37. 111-149 (2002)
G.Ishikawa:“具有简并高斯映射的子流形”高级研究纯数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hiroshi Tamaru: "Cohomogeneity one actions on symmetric spaces with a totally geodesic singular orbit"数理研考究緑. 1292. 106-114 (2002)
Hiroshi Tamaru:“同齐性对具有完全测地奇异轨道的对称空间的作用”数学研究格林。1292。106-114(2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
G.Ishikawa, S.Janeczko: "Symplectic bifurcations of plane curves and isotropic liftings"Quarterly Journal of Mathematic. 54. 73-102 (2003)
G.Ishikawa,S.Janeczko:“平面曲线的辛分岔和各向同性提升”数学季刊。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
R.Miyaoka: "Isoparametric geometry and related fields"Adv.Studies in Pure Math.. (To appear). (2004)
R.Miyaoka:“等参几何及相关领域”Adv.Studies in Pure Math..(待出现)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
山田光太郎: "曲線と曲面"裳華房. 224 (2002)
山田幸太郎:《曲线与曲面》Shokabo。224 (2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MIYAOKA Reiko其他文献

MIYAOKA Reiko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MIYAOKA Reiko', 18)}}的其他基金

Value distribution theory of bounded domains
有界域的值分布理论
  • 批准号:
    23654021
  • 财政年份:
    2011
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Fusion of geometry and the theory of integrable systems
几何学与可积系统理论的融合
  • 批准号:
    19204006
  • 财政年份:
    2007
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development and relations between various geometries and integrable systems
各种几何形状和可积系统之间的发展和关系
  • 批准号:
    16204007
  • 财政年份:
    2004
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Differential systems and submanifolds theory
微分系统和子流形理论
  • 批准号:
    12640087
  • 财政年份:
    2000
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

A study on submanifolds in a complex projective space
复射影空间中子流形的研究
  • 批准号:
    13640061
  • 财政年份:
    2001
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on moduli of the boundary structure of isolated singularities
孤立奇点边界结构模的研究
  • 批准号:
    12640080
  • 财政年份:
    2000
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Curves and Geometry
曲线和几何
  • 批准号:
    11640079
  • 财政年份:
    1999
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ケーラー磁場と複素多様体の構造
卡勒磁场和复杂流形的结构
  • 批准号:
    09740055
  • 财政年份:
    1997
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了