Differential equations and theory of submanifolds
微分方程和子流形理论
基本信息
- 批准号:14540090
- 负责人:
- 金额:$ 1.79万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
I proved the homogeneity of isoparametric hypersurfaces with six principal curvatures with multiplicity two, which I had been tackling for several years. I also got a new proof of Dorfmeister-Neher's theorem which treats the multiplicity one case, in a unified manner.Investigating the resulted homogeneous hypersurfaces, I got the following As was known in the case of multiplicity one, the hypersurfaces with 6 principal curvatures are given as a fibration over those with 3 principal curvature, where the fibers aret otally geodesic spheres. In the case of multiplicity two, the fiber dimension is six, while in the case of multiplicity one, this is three. Discovery of the fibration structure is an extension of our former results on the degenerate Gauss mapping which was done with G. Ishikawa and M. Kimura.Moreover, using the fact that the family of isoparametric hypersurfaces fill the ambient space, we get an interesting relation between 13-dimensional sphere and 7-dimensional sphere. Furthermore, using that these hypersurfaces are given as orbits of the exceptional group G_2, we can show that there exists a metric on S^7-CP^2 of which holonomy group is G_2. From this, a real open version of Calabi conjecture will be considered, i.e., when a compact Riemannian manifolds with positive Ricci curvature from which a certain part removed, admits a metric with G_2 holonomy? In this way, hypersurfaces obtained as G_2 orbits suggest us very important and interesting problems.
我证明了等六个主曲面的同质性,具有六个主要曲线,具有多重性,我已经处理了几年。 I also got a new proof of Dorfmeister-Neher's theorem which treats the multiplicity one case, in a unified manner.Investigating the resulted homogeneous hypersurfaces, I got the following As was known in the case of multiplicity one, the hypersurfaces with 6 principal curvatures are given as a fibration over those with 3 principal curvature, where the fibers aret otally geodesic球。在多重性二的情况下,纤维尺寸为六个,而在多重性的情况下,这是三个。纤维化结构的发现是我们以前的结果对使用G. iShikawa和M. kimura进行的退化高斯映射的扩展。此外,使用等异端术的家庭填充环境空间的事实,我们得到了13维领域和7级级别和7级阶段的有趣关系。此外,使用这些超曲面作为特殊组G_2的轨道,我们可以证明在S^7-CP^2上存在一个度量,其中自动构图是G_2。由此,将考虑一个真正的开放版本的卡拉比猜想,即,当一个带有正ricci曲率的紧凑型riemannian歧管上移除某个部分时,请承认具有G_2 holomony的指标?通过这种方式,作为G_2轨道获得的高空曲面表明我们非常重要且有趣的问题。
项目成果
期刊论文数量(105)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
G.Ishikawa: "Submanifolds with Degenerate Gauss Mappings"Advanced Studies Pure Math. 37. 111-149 (2002)
G.Ishikawa:“具有简并高斯映射的子流形”高级研究纯数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroshi Tamaru: "Cohomogeneity one actions on symmetric spaces with a totally geodesic singular orbit"数理研考究緑. 1292. 106-114 (2002)
Hiroshi Tamaru:“同齐性对具有完全测地奇异轨道的对称空间的作用”数学研究格林。1292。106-114(2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Kokubu: "An analogue of minimal surface theory in SL(n,C)/SU(n)"Trans. Amer. Math. Soc.. 354. 1299-1325 (2002)
M.Kokubu:“SL(n,C)/SU(n) 中最小曲面理论的类似物”Trans。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Kokubu: "An elementary proof of Small's formula for null curves in PSL(2,C) and an analogue for Legendrian curves in PSL(2,C)"Osaka J Math.. 40(to appear). (2003)
M.Kokubu:“PSL(2,C) 中零曲线的 Small 公式的基本证明和 PSL(2,C) 中 Legendrian 曲线的类似物”Osaka J Math.. 40(即将出现)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MIYAOKA Reiko其他文献
MIYAOKA Reiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MIYAOKA Reiko', 18)}}的其他基金
Value distribution theory of bounded domains
有界域的值分布理论
- 批准号:
23654021 - 财政年份:2011
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Fusion of geometry and the theory of integrable systems
几何学与可积系统理论的融合
- 批准号:
19204006 - 财政年份:2007
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Development and relations between various geometries and integrable systems
各种几何形状和可积系统之间的发展和关系
- 批准号:
16204007 - 财政年份:2004
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Differential systems and submanifolds theory
微分系统和子流形理论
- 批准号:
12640087 - 财政年份:2000
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
非均匀序电磁超表面理论及其在微波能量收集中的应用
- 批准号:51777168
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
相似海外基金
A study on submanifolds in a complex projective space
复射影空间中子流形的研究
- 批准号:
13640061 - 财政年份:2001
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on moduli of the boundary structure of isolated singularities
孤立奇点边界结构模的研究
- 批准号:
12640080 - 财政年份:2000
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Curves and Geometry
曲线和几何
- 批准号:
11640079 - 财政年份:1999
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ケーラー磁場と複素多様体の構造
卡勒磁场和复杂流形的结构
- 批准号:
09740055 - 财政年份:1997
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)