Research on moduli of the boundary structure of isolated singularities
孤立奇点边界结构模的研究
基本信息
- 批准号:12640080
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Under the guiding principle that the stably embeddable deformation of CR structures is the boundary analogue of the deformation of normal isolated singularities, we investigate description of stably embeddable deformation of CR structures on a link of normal isolated singularities. In particular, we concentrated on establishing the method describing it in the following three cases; (i) complete intersection singularities, (ii) quasi-homogeneous singularities and (iii) quotient singularities. The main results are as follows, (i) Complete intersection singularities: Deformation of singularities is controlled by means of CR functions on its link, and we can deduce so-called tha Kas-Schlessinger theorem, (ii) Quasi-homogeneous singularities: A grading induced by the S^1-action associ ating with the quasi-homogenety is introduced in the deformation space. We realized that the grading controlls the grading of deformations of defining equations of the singularities. Furthermore, if the singularities are cone singularities, the grading controlls deformation of resolution of singularities. These graded arguments provide the CR-version of the the orems of H. Pinkham and J. Wahl on deformation of quasi-homogenous singularities, (iii) Higher dimensional quotient singularities: Based on the sphere analysis, our construction of semi-universal family of stably embeddable deformation of CR structures provides the Sch lessingers rigidity theorem, (iv) Cyclic quotient surface singularities: (these singularities are the origin of several interesting geometries, e.g. twistor space, hyper Kaler manifold and quiver): In the case of the degree <__- 4, we obtained the CR description of the semi-universal deformation of the singularity and also description of the simultaneous resolution; in the case of degree >__- 5, we obtained an algorithm constructing the semi-universal deformation.
在指导原理中,稳定的Cr结构可嵌入变形是正常孤立奇点的变形的边界类似物,我们研究了在正常孤立奇异性链路上稳定嵌入Cr结构的稳定嵌入变形的描述。特别是,我们专注于在以下三种情况下建立描述该方法的方法。 (i)完整的交点奇异性,(ii)准同质奇异性和(iii)商奇异性。 The main results are as follows, (i) Complete intersection singularities: Deformation of singularities is controlled by means of CR functions on its link, and we can deduce so-called tha Kas-Schlessinger theorem, (ii) Quasi-homogeneous singularities: A grading induced by the S^1-action associ ating with the quasi-homogenety is introduced in the deformation space.我们意识到,等级控制了定义奇点方程的变形的分级。此外,如果奇异性是圆锥形奇异性,则分级控制奇异性分辨率的变形。这些分级论点提供了H. Pinkham和J. Wahl关于准遗传奇异性变形的OREM的cr-(iii)较高维度的奇异性:基于领域的分析,我们的半正常的构建稳定的cr层结构的稳定性变形提供了sch schs sche schers cristers corpirection cyore theore thy cyoreme cyerem cencectectices(这些cy)(这些cy)(IV)(IV)(iv)(IV)(IV)(IV)(IV)(IV)(IV)(IV)(IV)(IV)(IV)(IV)。是几个有趣的几何形状的起源,例如扭曲器空间,超级卡勒歧管和颤抖):在程度<__- 4的情况下,我们获得了对奇异性的半宇宙变形的CR描述以及同时分辨率的描述;在程度> __-5的情况下,我们获得了构建半宇宙变形的算法。
项目成果
期刊论文数量(69)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Miyajima,K.: "Strongly pseudoconvex CR manifolds and deformations of normal isolated singularities"Sugaku Exposition, A.M.S. )(in press)). 19
Miyajima,K.:“强伪凸 CR 流形和正常孤立奇点的变形”Sugaku Exposition,A.M.S.
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
L.Ernstrom, S.Yokura: "On bivariant Chern-Schwartz-MacPherson classes with values in Chow groups"Selecta Mathematica. 7(印刷中). 25 (2001)
L.Ernstrom,S.Yokura:“关于具有 Chow 群值的双变量 Chern-Schwartz-MacPherson 类”Selecta Mathematica 7(出版中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Aikou,T.: "Some remarks on Finsler vector bundles"Publ. Math. Debrecen. 57. 367-373 (2000)
Aikou,T.:“关于芬斯勒向量丛的一些评论”Publ。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Ohmoto,T. and Yokura,S.: "Product formula of the Milnor class"Bull. Polish Academy of Sciences. 48. 388-401 (2000)
大本,T.
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Yokura: "Bivariant theories of constructible functions and Grothendieck transformations"Topology and Its Applications. (印刷中). 14 (2001)
S. Yokura:“可构造函数和格洛腾迪克变换的双变理论”拓扑及其应用(出版中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MIYAJIMA Kimio其他文献
MIYAJIMA Kimio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MIYAJIMA Kimio', 18)}}的其他基金
Research on CR-approach to the moduli space of toric singularities
环面奇点模空间的CR方法研究
- 批准号:
23540099 - 财政年份:2011
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the moduli of the geometric structure on a boundary of isolated singularities
孤立奇点边界上几何结构模的研究
- 批准号:
20540087 - 财政年份:2008
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Moduli theory of strongly pseudo-convex CR structure and its application to higher dimensional isolated singularities
强赝凸CR结构的模理论及其在高维孤立奇点中的应用
- 批准号:
17540087 - 财政年份:2005
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the application of the boundary analysis and geometry to the moduli of isolated singularities
边界分析和几何在孤立奇点模中的应用研究
- 批准号:
14540087 - 财政年份:2002
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on moduli of strongly pseudo-convex CR manifolds embedded in algebraic varieties
嵌入代数簇的强赝凸CR流形模研究
- 批准号:
09640123 - 财政年份:1997
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Moduli theory of strongly pseudo-convex CR structure and its application to higher dimensional isolated singularities
强赝凸CR结构的模理论及其在高维孤立奇点中的应用
- 批准号:
17540087 - 财政年份:2005
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the application of the boundary analysis and geometry to the moduli of isolated singularities
边界分析和几何在孤立奇点模中的应用研究
- 批准号:
14540087 - 财政年份:2002
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic analysis of residue theory in several complex variables and algorithms
几种复杂变量和算法中留数理论的代数分析
- 批准号:
12640161 - 财政年份:2000
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On the construction of the Seiberg-Witten equation over CR
CR上Seiberg-Witten方程的构造
- 批准号:
12640219 - 财政年份:2000
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The application of the Rumin complex to isolated sirgularities
瘤胃复合体在孤立性规则中的应用
- 批准号:
10640211 - 财政年份:1998
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)