Research on moduli of the boundary structure of isolated singularities

孤立奇点边界结构模的研究

基本信息

  • 批准号:
    12640080
  • 负责人:
  • 金额:
    $ 2.3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2001
  • 项目状态:
    已结题

项目摘要

Under the guiding principle that the stably embeddable deformation of CR structures is the boundary analogue of the deformation of normal isolated singularities, we investigate description of stably embeddable deformation of CR structures on a link of normal isolated singularities. In particular, we concentrated on establishing the method describing it in the following three cases; (i) complete intersection singularities, (ii) quasi-homogeneous singularities and (iii) quotient singularities. The main results are as follows, (i) Complete intersection singularities: Deformation of singularities is controlled by means of CR functions on its link, and we can deduce so-called tha Kas-Schlessinger theorem, (ii) Quasi-homogeneous singularities: A grading induced by the S^1-action associ ating with the quasi-homogenety is introduced in the deformation space. We realized that the grading controlls the grading of deformations of defining equations of the singularities. Furthermore, if the singularities are cone singularities, the grading controlls deformation of resolution of singularities. These graded arguments provide the CR-version of the the orems of H. Pinkham and J. Wahl on deformation of quasi-homogenous singularities, (iii) Higher dimensional quotient singularities: Based on the sphere analysis, our construction of semi-universal family of stably embeddable deformation of CR structures provides the Sch lessingers rigidity theorem, (iv) Cyclic quotient surface singularities: (these singularities are the origin of several interesting geometries, e.g. twistor space, hyper Kaler manifold and quiver): In the case of the degree <__- 4, we obtained the CR description of the semi-universal deformation of the singularity and also description of the simultaneous resolution; in the case of degree >__- 5, we obtained an algorithm constructing the semi-universal deformation.
在CR结构的稳定嵌入变形是法向孤立奇点变形的边界模拟的指导原则下,我们研究了CR结构在法向孤立奇点链接上的稳定嵌入变形的描述。特别是,我们集中精力建立了在以下三种情况下描述它的方法; (i) 完全交集奇点,(ii) 准齐次奇点和 (iii) 商奇点。主要结果如下:(i)完全相交奇点:奇点的变形是通过其链接上的CR函数控制的,并可以推导出所谓的Kas-Schlessinger定理;(ii)拟齐次奇点:A由与准均匀性相关的 S^1 作用引起的分级被引入到变形空间中。我们意识到分级控制着奇点定义方程的变形分级。此外,如果奇点是圆锥奇点,则分级控制奇点分辨率的变形。这些分级论证提供了 H. Pinkham 和 J. Wahl 关于准同质奇点变形的定理的 CR 版本,(iii) 高维商奇点:基于球体分析,我们构建了半通用族CR 结构的稳定嵌入变形提供了 Sch lessingers 刚性定理,(iv) 循环商表面奇点:(这些奇点是几个有趣的几何形状的起源,例如扭量空间、超卡勒流形和箭袋):在度<__- 4的情况下,我们得到了奇点半万能变形的CR描述以及同时解析的描述;在度>__- 5的情况下,我们得到了构造半通用变形的算法。

项目成果

期刊论文数量(69)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.Yokura: "Bivariant theories of constructible functions and Grothendieck transformations"Topology and Its Applications. (印刷中). 14 (2001)
S. Yokura:“可构造函数和格洛腾迪克变换的双变理论”拓扑及其应用(出版中)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Ohmoto,T. and Yokura,S.: "Product formula of the Milnor class"Bull. Polish Academy of Sciences. 48. 388-401 (2000)
大本,T.
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Aikou: "Some remarks on the conformal equivalence of complex Finsler structures"Finslerian Geometries : A Metting of Minds (edited by P.L.Antonelli),. 35-52 (2000)
T.Aikou:“关于复杂芬斯勒结构的共形等价的一些评论”Finslerian Geometry : A Metting of Minds (P.L.Antonelli 编辑),。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Miyajima,K.: "Strongly pseudoconvex CR manifolds and deformations of normal isolated singularities"Sugaku Exposition, A.M.S. )(in press)). 19
Miyajima,K.:“强伪凸 CR 流形和正常孤立奇点的变形”Sugaku Exposition,A.M.S.
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
L.Ernstrom, S.Yokura: "On bivariant Chern-Schwartz-MacPherson classes with values in Chow groups"Selecta Mathematica. 7(印刷中). 25 (2001)
L.Ernstrom,S.Yokura:“关于具有 Chow 群值的双变量 Chern-Schwartz-MacPherson 类”Selecta Mathematica 7(出版中)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MIYAJIMA Kimio其他文献

MIYAJIMA Kimio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MIYAJIMA Kimio', 18)}}的其他基金

Research on CR-approach to the moduli space of toric singularities
环面奇点模空间的CR方法研究
  • 批准号:
    23540099
  • 财政年份:
    2011
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on the moduli of the geometric structure on a boundary of isolated singularities
孤立奇点边界上几何结构模的研究
  • 批准号:
    20540087
  • 财政年份:
    2008
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Moduli theory of strongly pseudo-convex CR structure and its application to higher dimensional isolated singularities
强赝凸CR结构的模理论及其在高维孤立奇点中的应用
  • 批准号:
    17540087
  • 财政年份:
    2005
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on the application of the boundary analysis and geometry to the moduli of isolated singularities
边界分析和几何在孤立奇点模中的应用研究
  • 批准号:
    14540087
  • 财政年份:
    2002
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on moduli of strongly pseudo-convex CR manifolds embedded in algebraic varieties
嵌入代数簇的强赝凸CR流形模研究
  • 批准号:
    09640123
  • 财政年份:
    1997
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

分数阶Serrin型超定问题和孤立奇点方程解的渐近性质研究
  • 批准号:
    12261041
  • 批准年份:
    2022
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
关于平均曲率流若干奇点问题的研究
  • 批准号:
    12026262
  • 批准年份:
    2020
  • 资助金额:
    10.0 万元
  • 项目类别:
    数学天元基金项目
关于平均曲率流若干奇点问题的研究
  • 批准号:
    12026251
  • 批准年份:
    2020
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
蒙日-安培方程奇性问题及相关几何问题的研究
  • 批准号:
    11901009
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
具有高阶奇点的反散射方法在可积系统中的应用
  • 批准号:
    11801510
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Moduli theory of strongly pseudo-convex CR structure and its application to higher dimensional isolated singularities
强赝凸CR结构的模理论及其在高维孤立奇点中的应用
  • 批准号:
    17540087
  • 财政年份:
    2005
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on the application of the boundary analysis and geometry to the moduli of isolated singularities
边界分析和几何在孤立奇点模中的应用研究
  • 批准号:
    14540087
  • 财政年份:
    2002
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algebraic analysis of residue theory in several complex variables and algorithms
几种复杂变量和算法中留数理论的代数分析
  • 批准号:
    12640161
  • 财政年份:
    2000
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On the construction of the Seiberg-Witten equation over CR
CR上Seiberg-Witten方程的构造
  • 批准号:
    12640219
  • 财政年份:
    2000
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The application of the Rumin complex to isolated sirgularities
瘤胃复合体在孤立性规则中的应用
  • 批准号:
    10640211
  • 财政年份:
    1998
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了