Research of Iwasawa Theory fof Formal Groups
岩泽形式群理论研究
基本信息
- 批准号:12640038
- 负责人:
- 金额:$ 2.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Iwasawa Theory started as a method for investigating (a tower of) cyclotomic fields and soon was generalized to arbitrary number fields. Recently, Iwasawa Theory for elliptic curves has been constructed and has developed extensively. Iwasawa Theory for number fields is related to multiplicative group and Iwasawa Theory for elliptic curves is naturally related to the group structure of elliptic curves. Our aim in this project was to generalize Iwasawa Theory for formal groups, which include multiplicative and elliptic curve groups as special cases. For that purpose, we first investigated(1) general theory of formal groupsand, as important examples of the theory,(2) Iwasawa Theory of number fields (multiplicative group),(3) Iwasawa Theory of elliptic curves (elliptic curve group).For (1) we mainly considered Honda's theory which classified formal groups over the integer ring. We also tried numerical computation for formal groups using Maple. For (2) our main concern was Greenberg's conjecture and its relation to normal integral bases. For (3) we obtained results for mu-invariants of elliptic curves, extending the former results of R.Greenberg.
岩泽理论最初是一种研究分圆域(塔)的方法,很快就被推广到任意数域。最近,椭圆曲线的岩泽理论被构建并得到了广泛的发展。数域的岩泽理论与乘法群有关,椭圆曲线的岩泽理论自然与椭圆曲线的群结构有关。我们在这个项目中的目标是将岩泽理论推广到形式群,其中包括乘法和椭圆曲线群作为特殊情况。为此,我们首先研究了(1)形式群的一般理论,并且作为该理论的重要例子,(2)数域岩泽理论(乘法群),(3)椭圆曲线岩泽理论(椭圆曲线群)。对于(1),我们主要考虑本田的理论,该理论在整数环上对形式群进行分类。我们还尝试使用 Maple 对形式群进行数值计算。对于(2),我们主要关心的是格林伯格猜想及其与正规积分基的关系。对于(3),我们获得了椭圆曲线的 mu 不变量的结果,扩展了 R.Greenberg 之前的结果。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Ichimura, F.Kawamoto: "An infinite family of totally real number fields"Acta Arithmetica. 106-2. 171-181 (2003)
H.Ichimura、F.Kawamoto:“全实数域的无限族”算术学报。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Naito: "Local fields generated by 3-division points on elliptic curves"Proc.Japan Academy. 78-9. 173-178 (2002)
H.Naito:“由椭圆曲线上的 3 分点生成的局部场”Proc.Japan Academy。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Ichimura: "On power integral bases of unramified cyclic extension of prime degree"Journal of Algebra. 235. 104-112 (2001)
H.Ichimura:“论素数次无分支循环扩展的幂积分基”代数杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
on a normal integral bases problem over cyclotomic Zp-extension, II
关于分圆 Zp 扩展的正规积分基问题,II
- DOI:
- 发表时间:2002
- 期刊:
- 影响因子:0
- 作者:Yoshitaka Hachimori;Yoshichika Iizuka;Yoshitaka Hachimori;Yoshichika Iizuka;Shoichi Nakajima;Humio Ichimura
- 通讯作者:Humio Ichimura
Local fields generated by 3-division points of elliptic curves
椭圆曲线三分点生成的局部场
- DOI:
- 发表时间:2002
- 期刊:
- 影响因子:0
- 作者:Yoshitaka Hachimori;Yoshichika Iizuka;Yoshitaka Hachimori;Yoshichika Iizuka;Shoichi Nakajima;Humio Ichimura;Hirotada Naito
- 通讯作者:Hirotada Naito
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NAKAJIMA Shoichi其他文献
NAKAJIMA Shoichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NAKAJIMA Shoichi', 18)}}的其他基金
Alexander polynomials of knots and number theory
纽结和数论的亚历山大多项式
- 批准号:
22654006 - 财政年份:2010
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Arithmetic of Z_p-field and geometry of algebraic curves
Z_p场的算术和代数曲线的几何
- 批准号:
09640008 - 财政年份:1997
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
A formal group theory-based model in primates for studying interactive social behavior and its dysfunction
用于研究互动社会行为及其功能障碍的基于正式群体理论的灵长类动物模型
- 批准号:
10567456 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Children's Help to Aging Parents in the Face of Health and Economic Challenges from the COVID-19 Pandemic
面对 COVID-19 大流行带来的健康和经济挑战,儿童为年迈的父母提供帮助
- 批准号:
10483216 - 财政年份:2021
- 资助金额:
$ 2.18万 - 项目类别:
Children's Help to Aging Parents in the Face of Health and Economic Challenges from the COVID-19 Pandemic
面对 COVID-19 大流行带来的健康和经济挑战,儿童为年迈的父母提供帮助
- 批准号:
10287956 - 财政年份:2021
- 资助金额:
$ 2.18万 - 项目类别:
Strategies for Effective Caregiver Communication with Persons with Alzheimer's Disease and Other Dementias (SECC-AD)
护理人员与阿尔茨海默病和其他痴呆症患者有效沟通的策略 (SECC-AD)
- 批准号:
9917257 - 财政年份:2020
- 资助金额:
$ 2.18万 - 项目类别:
Multisymplectic Geometry and Geometric Numerical Integrator for Variational Problems
变分问题的多辛几何和几何数值积分器
- 批准号:
20K14365 - 财政年份:2020
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists