Arithmetic of Z_p-field and geometry of algebraic curves

Z_p场的算术和代数曲线的几何

基本信息

项目摘要

The aim of this project was investigating Iwasawa theory of algebraic number fields through the notion of Zp-field, and through comparing it with the arithmetic theory of elliptic curves.The results obtained in the project are concerned with(1) basic construction of Iwasawa theory(2) arithmetic of elliptic curves over algebraic number fields, and they are collected in the publication of the results of this project.In this project the following activities were also proceeded :(3) activity of "Kummer Research Group"(4) computation of examples by using computer algebra system.(3) is a project for reading papers of Kummer on number theory, expecting to find new ideas in classical great works.(4) is an attempt to find good examples for Iwasawa theory by making use of computers whose ability is extensively advanced recently.For (3) and (4) no concrete results have been published yet.However, in future we expect to publish, in some form, the results of activities (3) and (4) that were begun as part of this project.
The aim of this project was investigating Iwasawa theory of algebraic number fields through the notion of Zp-field, and through comparing it with the arithmetic theory of elliptic curves.The results obtained in the project are concerned with(1) basic construction of Iwasawa theory(2) arithmetic of elliptic curves over algebraic number fields, and they are collected in the publication of the results of this project.In this project the following还进行了活动:(3)“ Kummer Research Group”(4)使用计算机代数系统计算示例的活动。(3)是一个阅读Kummer关于数字理论的论文的项目,期望在古典伟大作品中找到新的想法。(4)试图通过在iWasawa Theopers进行良好的示例来使用iWasawa Theemens来使用iWasawa Theopers的范围,而否则尚无广泛的计算机,并且在最近的计算机上进行了广泛的表现。然而,无论将来,我们希望以某种形式发布作为该项目的一部分开始的活动(3)和(4)的结果。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Ichimura, H.Sumida: "On the Iwasawa invariants of certain real abeliau fields" Tohoku Math. J.49. 203-215 (1997)
H.Ich​​imura、H.Sumida:“论某些真实阿贝廖域的岩泽不变量”东北数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
中島匠一: "岩沢理論入門" 数理解析研究所講究録. 1026. 28-42 (1998)
Takuichi Nakajima:“岩泽理论导论”数学分析研究所的 Kokyuroku。1026. 28-42 (1998)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Ichimura: "Local units modulo Gauss sums" J.Number Theory. 68. 36-56 (1998)
H.Ich​​imura:“局部单位模高斯和”J.数论。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Ichimura: "Class numbers of real quadratic function fields of genus one" Finite Fields and Their Applications. 3. 181-185 (1997)
H.Ich​​imura:“属一实二次函数域的类数”有限域及其应用。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Nakajima: "Introduction to Iwasawa theory (in Japanese)" RIMS Kokyu-roku. 1026. 28-42 (1998)
S.Nakajima:“岩泽理论简介(日语)”RIMS Kokyu-roku。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAKAJIMA Shoichi其他文献

NAKAJIMA Shoichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAKAJIMA Shoichi', 18)}}的其他基金

Alexander polynomials of knots and number theory
纽结和数论的亚历山大多项式
  • 批准号:
    22654006
  • 财政年份:
    2010
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Research of Iwasawa Theory fof Formal Groups
岩泽形式群理论研究
  • 批准号:
    12640038
  • 财政年份:
    2000
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Distribution of units of an algebraic number field modulo rational primes
代数数域模有理素数的单位分布
  • 批准号:
    18540056
  • 财政年份:
    2006
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study on prehomogeneous vector spaces and extensions of algebraic number fields
预齐次向量空间与代数数域的延拓研究
  • 批准号:
    16540015
  • 财政年份:
    2004
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Kac-Moody Lie algebra and Hilbert modular forms
Kac-Moody 李代数和希尔伯特模形式
  • 批准号:
    14540022
  • 财政年份:
    2002
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on the arithmetic discontinuous groups
算术不连续群的研究
  • 批准号:
    14540008
  • 财政年份:
    2002
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Distribution of units of an algebraic number field from the viewpoint of class field theory and analytic number theory
从类域论和解析数论的角度看代数数域的单位分布
  • 批准号:
    13640049
  • 财政年份:
    2001
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了