Geometry of Numbers on Homogeneous Spaces and Generalized Hermite Constants

齐次空间上的数几何和广义厄米常数

基本信息

  • 批准号:
    12640023
  • 负责人:
  • 金额:
    $ 2.18万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2002
  • 项目状态:
    已结题

项目摘要

The purpose of this project is to study the distribution of rational points or integral points on an algebraic homogeneous space defined over a global field by using the method of geometry of numbers and adelic analysis. We obtained the following results. Let K be a global field, G a connected reductive K-algebraic group, Q a maximal K-parabolic subgroup of G and X = Q\G a flag variety defined over K Denote by X(K) the set of K・rational points of X. If G(A)' and Q(A)' denote the unimodular parts of the adele groups of G and Q, respectively, then the quotient space Q(A)' \G(A)' is a locally compact space and contains X(K). By nsing the sirnple root corresponding to Q, one can define a beight function H on Y. for T >o, B(T) stands for the set of elements of Y whose heights are less than or equal tu T. Then the number N(T) = IB(T) ∩X(K) I is always finite. Main results are stated as follows1. If K is an algebraic number field, then the asymptotics N(T) 〜 ω (B(T)) τ (Q) / τ (G) (T→∞) holds. Here τ (G) and τ (Q) denotes the Tamaagwa number of G and Q, respectivaly, and ω (B(T)) stands for the volume of B(T) with respect to the Tamagawa measure ω ib Y2. We define the function γ on G(A)' by γ (g) = min { H(xg) I ×∈X(K) } for element g of G(A)' and denote by γ (G,Q,K) the maximum of γ.γ (G,Q,K) is called the fundamental Hermite constant. Satisfies some functorial properties, e.g., the invariance of scalar restrictions of K and some central extensions of G. Furthermore we generalized Rankin's inequality and the Minkowski-Hlawka bound to the fundamental Hermite constant
本项目的目的是通过使用数几何和adelic分析的方法来研究全局域上定义的代数齐次空间上的有理点或积分点的分布,我们得到了以下结果。 ,G 是连通的还原 K 代数群,Q 是 G 的最大 K 抛物线子群,X = Q\G 是在 K 上定义的标志变量 用 X(K) 表示 X 的 K·有理点集合。 G(A)' 和 Q(A)' 分别表示 G 和 Q 的阿黛尔群的幺模部分,则商空间 Q(A)' \G(A)' 是局部紧空间并包含 X( K).通过求Q对应的简单根,可以在Y上定义一个beight函数H。当T>o时,B(T)代表Y中高度小于或等于tu T的元素的集合。则数量N(T) = IB(T) ∩X(K) I 总是有限的。 (Q) / τ (G) (T→∞) 此处 τ (G) 和 τ (Q) 分别表示 G 和 Q 的 Tamaagwa 数,并且 ω 成立。 (B(T)) 代表 B(T) 相对于玉川测度 ω ib Y2 的体积 我们通过 γ (g) = min { H(xg) I × 定义 G(A)' 上的函数 γ。 ε(K) } 对于 G(A)' 的元素 g 并用 γ (G,Q,K) 表示 γ 的最大值。γ (G,Q,K) 称为基本埃尔米特常数 满足一些函子性质。 ,例如,K 的标量限制的不变性和 G 的一些中心扩展。此外,我们推广了兰金不等式和 Minkowski-Hlawka 与基本 Hermite 常数的联系

项目成果

期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
渡部 隆夫: "Hermite constants of division algebras"Monatshefte for Mathematik. 135. 157-166 (2002)
Takao Watanabe:“除法代数的埃尔米特常数”Monatshefte for Mathematik 135. 157-166 (2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
渡部 隆夫: "Fundamental Hermite constants of lancer algebraic groups"Journal of Japan Math.Soc. (印刷中).
Takao Watanabe:“兰瑟代数群的基本埃尔米特常数”,日本数学学会杂志(正在出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Takao Watanabe: "The Hardy-Littlewood oroperty of flag varieties"Nagoya Math. Journal, to appear.
Takao Watanabe:“旗帜品种的Hardy-Littlewood oroperty”名古屋数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Watanabe: "Hermite Constants of Division Algebras"Monatshefte fur Mathematik. 135. 157-166 (2002)
T.Watanabe:《除法代数的埃尔米特常数》数学月刊。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Takao Watanabe: "Hermite constants of division algebras"Monatshefte Math. 135. 157-166 (2002)
Takao Watanabe:《除法代数的埃尔米特常数》Monatshefte Math。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WATANABE Takao其他文献

WATANABE Takao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WATANABE Takao', 18)}}的其他基金

Engineering analysis on manual assistance of physical therapist and application toward gait rehabilitation
物理治疗师徒手辅助的工程分析及其在步态康复中的应用
  • 批准号:
    23700671
  • 财政年份:
    2011
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Construction of Voronoi theory over adele groups
阿黛尔群的 Voronoi 理论的构建
  • 批准号:
    23540016
  • 财政年份:
    2011
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dietary intake of silicon and nutritional situation of the peoplesinvestigated by the food duplicate method in Japan, China and Korea
食品重复法调查日本、中国、韩国三国人群膳食硅摄入量及营养状况
  • 批准号:
    22500755
  • 财政年份:
    2010
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Epigenetic regulations associated with biological and clinical relevancies in diffuse gliomas
与弥漫性胶质瘤的生物学和临床相关性相关的表观遗传调控
  • 批准号:
    21591883
  • 财政年份:
    2009
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Biological and clinical relevances of SNP of MGMT gene in diffuse gliomas
弥漫性胶质瘤中MGMT基因SNP的生物学和临床相关性
  • 批准号:
    19591706
  • 财政年份:
    2007
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nutritional study on the trace elements for children in Japan,China and Korea by the food duplicate method and hair monitoring
食物重复法和毛发监测对日本、中国、韩国儿童微量元素营养研究
  • 批准号:
    19500676
  • 财政年份:
    2007
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Hermite constants of algebraic groups and their applications
代数群的埃尔米特常数及其应用
  • 批准号:
    19540026
  • 财政年份:
    2007
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Crystal Growth of Triple Layered Bismuth Based High-Tc Superconductors
三层铋基高温超导体的晶体生长
  • 批准号:
    19540354
  • 财政年份:
    2007
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Voronoi Theory on Flag Varieties
旗帜品种的 Voronoi 理论
  • 批准号:
    15540026
  • 财政年份:
    2003
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Comparative study on dietary intake of children by food duplicate method in special reference to trace elements in Asian countries
食物重复法特别针对微量元素的亚洲各国儿童膳食摄入量比较研究
  • 批准号:
    15406024
  • 财政年份:
    2003
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了