Researches on Properties of Banach Spaces of Analytic Functions and Their Operators

解析函数及其算子的Banach空间性质研究

基本信息

  • 批准号:
    11640179
  • 负责人:
  • 金额:
    $ 1.34万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1999
  • 资助国家:
    日本
  • 起止时间:
    1999 至 2000
  • 项目状态:
    已结题

项目摘要

According to our researches' plan, we have investigated the spaces of analytic functions and their operators, mainly, " composition operators".[1] B.MacCluer, S.Ohno and R.Zhao characterized components and isolated points of the topological space of composition operators on H^∞ in the uniform operator topology and also compact differences of two composition operators. With the aid of these results, we showed that a component in the space of composition operators is not in general the set of all composition operators that differ from the given one by a compact operator.[2] We have considered weighted composition operators as the generalization of composition and multiplication operators.(1) S.Ohno, K.Stroethoff and R.Zhao characterized the necessary and sufficient conditions for weighted composition operators to be bounded or compact between Bloch-type spaces of analytic functions on the unit disk including Lipschitz spaces and Bloch spaces. Continuously, we would consider the case of small Bloch-type spaces.(2) S.Ohno characterized weighted composition operators between H^∞ and Bloch space. Moreover, S.Ohno considered them between H^2 and Bloch space. The investigation in this situation, we suppose, might have some relationship to the problem (Sundberg and Shapiro's problem) of characterizing composition operators that are isolated in the space of all composition operator on H^2.(3) S.Ohno and H.Takagi studied weighted composition operators on the disk algebra and H^∞. For these operators, we proved the equivalence of the compactness, the weak compactness and the complete continuity. Moreover, we gave the necessary and sufficient conditions for weighted composition operators to have closed range or to be Fredholm operators.[3] S.Ohno defined de Branges-Rovnyak spaces induced by composition operator and reduced elementary results from the general situation due to D.Sarason. We could consider the problems of multipliers and invariant subspaces.
根据我们的研究计划,我们研究了分析功能及其运营商的空间,主要是“组成运营商”。[1] B. Maccluer,S.Ohno和R.Zhao表征了均匀操作员拓扑中H^∞的组成算子拓扑空间的组件和孤立点,并且还紧凑了两个组成算子的差异。借助这些结果,我们表明,组成算子空间中的一个组成部分通常不是与紧凑型操作员不同的所有组成算子的集合。[2] (1)S.Ohno,K.Strothoff和R.Zhao认为加权组合算子是组成和乘法操作员的概括。连续地,我们将考虑小蓝色型空间的情况。(2)S.ohno表征了H^∞和Bloch空间之间的加权组合算子。此外,S.Ohno在H^2和Bloch空间之间考虑了它们。我们认为,对这种情况的投资可能与该问题(Sundberg和Shapiro的问题)具有一定的关系,即在H^2上所有组成操作员的空间中孤立的组成操作员(3)S.Ohno和H.Takagi Studiod Studiod加权构图操作员在Disk algebra和H^∞上。对于这些操作员,我们提供了紧凑性,紧凑性和完全连续性的等效性。此外,我们为加权构图操作员提供了必要和充分的条件,使其具有封闭范围或成为弗雷霍尔姆操作员。[3] S.ohno定义了由组成操作员引起的De Branges-Rovnyak空间,并从D. sarason引起的一般情况下降低了基本结果。我们可以考虑乘数和不变子空间的问题。

项目成果

期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.Ohno: "Weighted composition operators between Hardy and Bloch spaces"Abstracts of Amer.Math.Soc.. 22. 111 (2001)
S.Ohno:“Hardy 和 Bloch 空间之间的加权合成算子”Amer.Math.Soc. 的摘要。22. 111 (2001)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Ohno: "Weighted Composition Operators between H^∞ and the Bloch Space"Taiwanese J.Math.. (to appear).
S.Ohno:“H^∞ 和 Bloch 空间之间的加权组合算子”台湾 J.Math..(待发表)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Ohno, K.Stroethoff and R.Zhao: "Weighted composition operators between Bloch-type spaces"Rocky Mountain Math.J... (to appear).
S.Ohno、K.Stroethoff 和 R.Zhao:“Bloch 型空间之间的加权合成算子”Rocky Mountain Math.J...(即将出现)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Ohno,K.Stroethoff,R.Zhao: "Weighted composition operators beween Bloch-type spaces"to appear in Rocky Mountain Math.J..
S.Ohno、K.Stroethoff、R.Zhao:“Bloch 型空间之间的加权合成算子”出现在 Rocky Mountain Math.J. 中。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
B.Maclua,S.Ohno,R.Zhao: "Topological structure of the space of composition operators on H^∞"to appear in Integral Equ, and Op.Th..
B.Maclua、S.Ohno、R.Zhao:“H^∞ 上复合算子空间的拓扑结构”出现在 Integral Equ 和 Op.Th. 中。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OHNO Shuichi其他文献

OHNO Shuichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OHNO Shuichi', 18)}}的其他基金

Researches on the structures of analytic function spaces and linear operators on them
解析函数空间及其线性算子的结构研究
  • 批准号:
    15K04905
  • 财政年份:
    2015
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Researches on the structures of the spaces of analytic and harmonic functions and operators on them
解析调和函数空间结构及其算子的研究
  • 批准号:
    24540190
  • 财政年份:
    2012
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
PERFORMANCE IMPROVEMENT OF OFDM BY PILOT-AIDED SPARCECHANNEL ESTIMATION
通过导频辅助空间信道估计改进 OFDM 性能
  • 批准号:
    22560380
  • 财政年份:
    2010
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Researches on the structures of function spaces of analytic and harmonic functions and operators on them
解析函数和调和函数的函数空间结构及其算子的研究
  • 批准号:
    20540185
  • 财政年份:
    2008
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Researches on the Spaces of Analytic and Harmonic Functions and Their Operators
解析函数、调和函数空间及其算子的研究
  • 批准号:
    17540169
  • 财政年份:
    2005
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Researches on Properties of the Spaces of Analytic Functions and Their Operators
解析函数及其算子空间性质的研究
  • 批准号:
    15540181
  • 财政年份:
    2003
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies of The Structures of Analytic Function Spaces and Their Operators
解析函数空间及其算子的结构研究
  • 批准号:
    09640218
  • 财政年份:
    1997
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies of The Spaces of Analytic Functions and Their Operators
解析函数空间及其算子的研究
  • 批准号:
    07640242
  • 财政年份:
    1995
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

Bloch空间及其乘子代数的随机化
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Bloch空间及其乘子代数的随机化
  • 批准号:
    12101103
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
华罗庚域上Bloch型空间之间加权复合算子的性质刻画
  • 批准号:
    11771184
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
多复变数的Julia引理与Fock空间性质的研究及应用
  • 批准号:
    11571105
  • 批准年份:
    2015
  • 资助金额:
    51.0 万元
  • 项目类别:
    面上项目
多复变数函数空间上的算子理论
  • 批准号:
    11471301
  • 批准年份:
    2014
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Studies on holomorphic mappings on the homogeneous unit ball in finite or infinite dimensional complex Banach spaces
有限或无限维复Banach空间中齐次单位球的全纯映射研究
  • 批准号:
    20K03640
  • 财政年份:
    2020
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conformal invariants of Riemann surfaces and theta functions
黎曼曲面和 theta 函数的共形不变量
  • 批准号:
    12640156
  • 财政年份:
    2000
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了