Studies of The Structures of Analytic Function Spaces and Their Operators

解析函数空间及其算子的结构研究

基本信息

  • 批准号:
    09640218
  • 负责人:
  • 金额:
    $ 1.98万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

(1) Ohno has investigatcd the 1)robleln of components of composition operators on H^* and obtained almost conIl)Iete answers with Professor IL Zhao. We had a talk at Poster Session in International Matlnnaticiazhs Goiigrcss 1998, Berlin, Garmany. After thc talk, wc summarized results to a paper with Profcssor beta.D). MacChicr and(l submitted it. Moreover Olino have studied weighted composition operators on some sup-norm function spaces, the disk algebra, H^* and the Bloch space. And R.Zha.o added results in the case of the case little Bloch space. We are ready to submit a manuscript.(2) Funabashmi studied time geometrical properties of the SP(1)-orbits which are realized by the special kinds of three actions to tIme nearly Kachler 6-sphere. We proved that each orbit is a manifold and somne orbit equips the contact CR-structure having the three distinct principal curvatures. Those results will be contributed in the imear future. We also studied about contact CR-submanifolds immersed in … More Sasakian space forms. Our maun results is that some totally contact Al-umbilical contact CR-submanifold is realized as the 2-dimensional torus immersed in the 3-dimensional sphere. For those results, we will contribute the paper entitled "On totally contact Al-umbilical contact CR-submanifolds" in collaboration with S.Funabashi, J.H.Kwon and J.S.Pak.(3) Let S^6 be the 6-dimensional unit sphere centered at the origin in a 7-dimensional Euclidean space. Hashimnoto identified 7-dimensional Euchidean space with purely imaginary octon ions ImO (or Cayley algebra). Taking account of algebraic properties of octonions we can define the homogeneous almost Itermitian structure on S^6, We denote by G_2 the Lie group of autornorphisms of O.Then we have S^6 = G_2/SU(3). This almost colnj)lex structure satisfy the nearly Kahler condition. ((*xJ)X = 0) where * is the Levi-Civita connection of S^6, and X is any vector field of S^6. We shall give some rigidity theorem of invariant submanifolds up to the action of G_2 amid deterirmine its geometrical invariants. Also, we shall give many examples of 3-dimensional CR-snbmanifolds of S^6 explicitely. We obtained some results related to 4-dimensional CR-submanifolds of S^6.(4) Ishmizaki has beemi studying the value distribution theory of meromorphic functions. Applications this theory to com np hex differential equations are of our interest. Algebraic differential equations admitting admissible solutiomis and complex oscillation theory have been comisidered. We are also concerned with functional equations in the complex plane. Results of existence and growth conditions on transcendental meromorphic solutions of Schmrdder's type functional equations, which are some generalizations due to Wittich, are obtained. Moreover, we investigated to lmypertranscendency of merornorphic solutiohs of a certain functional equation. Characterization of the set of meromorphic. functions has been studied from the unicity tlmeoretical poimits of view.(5) Eto investigated homnological properties of monoid rings, especially affine semigroup rings. To do it, lie comistructedI free resolntiomis of them in two cases conibinatorically. They are found in papers "a free resolutions of a binomial ideal" and "finite free resolutions of rnonoid rings". Less
(1)OHNO对1)构成操作员组成的Roblen进行了研究,并与Il Zhao教授获得了几乎Conil的答案。我们在国际Matlnnaticiazhs Goiigrcss 1998年,柏林,Garmany举行了一场演讲。 THC讨论后,WC将结果汇总到Profcssor beta.d的论文中。 MacChicr和(l提交了。此外,Olino在某些Sup-Norm功能空间,磁盘代数,H^*和Bloch空间和R.Zha.O中添加了加权组成操作员。和R.Zha.o在情况下增加了结果。在几乎是kachler的三个动作中,我们证明了每个轨道是一种跨度的轨道,与三个不同的主体曲线相当。二维圆环浸入了三维领域,我们将与S.Funabashi,J.H.Kwon和J.S.-Pak合作,为“完全接触Al-bumbilical接触CR CR-SUBMANIFOLDS”贡献,该论文是6维单元的SPRAPINE(3)。 Hashimnoto鉴定了具有纯粹想象的八个离子IMO(或Cayley代数)的7维辉体空间。考虑到八元的代数特性,我们可以在s^6上定义几乎均匀的结构,我们用g_2表示O的lie of o的自构态。然后,我们有s^6 = g_2/su(3)。这种几乎colnj)的结构几乎满足了卡勒的条件。 (( * xj)x = 0)其中 *是s^6的levi-civita连接,而x是s^6的任何向量字段。我们将给出一些不变的子曼群的刚性理论,以决定其几何不变的g_2的作用。另外,我们将明确地提供许多S^6的3维Cr-SnbManifolds的例子。我们获得了一些与S^6的4维Cr-Submanifolds相关的结果。(4)Ishmizaki已经研究了Meromormorthic函数的价值分布理论。应用该理论对六角差分方程是我们感兴趣的。已提出了接受可允许的实体和复杂振荡理论的代数微分方程。我们还关注复杂平面中的功能方程。获得了Schmrdder类型功能方程的先验物质溶液的存在和生长条件的结果,这是由于Wittich引起的一些概括。此外,我们调查了某个功能方程的merormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormorormormormormormorormormormorormormormormorormormormormormormormormormormormormormormormormormormorriohs。一组Meromorthic的表征。函数已经从统一的视野统一性研究中进行了研究。(5)ETO研究了单体环的家庭学特性,尤其是仿射半群环。为此,在两种情况下,comistructedi lie comistructedi无溶剂的分解。它们在“二项式理想的自由分辨率”和“ Rnonoid环的有限的无限分辨率”中发现。较少的

项目成果

期刊论文数量(59)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Ishizaki(共): "Unicity theorems for meromorphic sharing four small functions" Koclai Muth. J.21. 350-371 (1998)
K.Ishizaki(co):“亚纯共享四个小函数的唯一性定理”Koclai Muth J.21 (1998)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Eto: "Cohen-Macaulay rings associated with digraphs" J.Algebra. 206. 541-544 (1998)
K.Eto:“与有向图相关的科恩-麦考利环”J.代数。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Ohno: "Rocky Mountain Mathematis Consortium Summer Conference 1996 Composition Operators on spaces of analytic functins" Report of Reseanches N.I.T. 26. 421-436 (1997)
S.Ohno:“落基山数学联盟夏季会议 1996 年分析函数空间的组合算子”N.I.T 研究报告
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Ishizaki and K.Tohge: "Research reports of the Nevanlinna theory and its applications I" Report of Resaerches of Nippon Institute of Technology. 27. 113-155 (1997)
K.Ishizaki和K.Tohge:“Nevanlinna理论及其应用的研究报告I”日本工业大学研究报告。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Ishizaki(共): "Study of transcenclental numbers and complex differential equations I" Report of Researches N.I.T.近刊.
K. Ishizaki(合著者):“超越数和复微分方程的研究 I”N.I.T 研究报告即将发布。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OHNO Shuichi其他文献

OHNO Shuichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OHNO Shuichi', 18)}}的其他基金

Researches on the structures of analytic function spaces and linear operators on them
解析函数空间及其线性算子的结构研究
  • 批准号:
    15K04905
  • 财政年份:
    2015
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Researches on the structures of the spaces of analytic and harmonic functions and operators on them
解析调和函数空间结构及其算子的研究
  • 批准号:
    24540190
  • 财政年份:
    2012
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
PERFORMANCE IMPROVEMENT OF OFDM BY PILOT-AIDED SPARCECHANNEL ESTIMATION
通过导频辅助空间信道估计改进 OFDM 性能
  • 批准号:
    22560380
  • 财政年份:
    2010
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Researches on the structures of function spaces of analytic and harmonic functions and operators on them
解析函数和调和函数的函数空间结构及其算子的研究
  • 批准号:
    20540185
  • 财政年份:
    2008
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Researches on the Spaces of Analytic and Harmonic Functions and Their Operators
解析函数、调和函数空间及其算子的研究
  • 批准号:
    17540169
  • 财政年份:
    2005
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Researches on Properties of the Spaces of Analytic Functions and Their Operators
解析函数及其算子空间性质的研究
  • 批准号:
    15540181
  • 财政年份:
    2003
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Researches on Properties of Banach Spaces of Analytic Functions and Their Operators
解析函数及其算子的Banach空间性质研究
  • 批准号:
    11640179
  • 财政年份:
    1999
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies of The Spaces of Analytic Functions and Their Operators
解析函数空间及其算子的研究
  • 批准号:
    07640242
  • 财政年份:
    1995
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Studies on holomorphic mappings on the homogeneous unit ball in finite or infinite dimensional complex Banach spaces
有限或无限维复Banach空间中齐次单位球的全纯映射研究
  • 批准号:
    20K03640
  • 财政年份:
    2020
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of the Molecular Determinants of Regulatory Hierarchy of a Bacterial Sma
细菌 Sma 调控层次的分子决定因素分析
  • 批准号:
    8708113
  • 财政年份:
    2010
  • 资助金额:
    $ 1.98万
  • 项目类别:
Analysis of the Molecular Determinants of Regulatory Hierarchy of a Bacterial Sma
细菌 Sma 调控层次的分子决定因素分析
  • 批准号:
    8115806
  • 财政年份:
    2010
  • 资助金额:
    $ 1.98万
  • 项目类别:
Analysis of the Molecular Determinants of Regulatory Hierarchy of a Bacterial Sma
细菌 Sma 调控层次的分子决定因素分析
  • 批准号:
    8309247
  • 财政年份:
    2010
  • 资助金额:
    $ 1.98万
  • 项目类别:
Analysis of the Molecular Determinants of Regulatory Hierarchy of a Bacterial Sma
细菌 Sma 调控层次的分子决定因素分析
  • 批准号:
    8514636
  • 财政年份:
    2010
  • 资助金额:
    $ 1.98万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了