Studies of The Spaces of Analytic Functions and Their Operators
解析函数空间及其算子的研究
基本信息
- 批准号:07640242
- 负责人:
- 金额:$ 1.41万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1995
- 资助国家:日本
- 起止时间:1995 至 1996
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1) In 1995, Ohno investigated Toeplitz and Hankel operators on harmonic Borgman spaces on the unit disk. Main results are to characterize algebraic properties, boundedness and compactness. There exists a relation between the compactness of Hankel operators and Bourgain algebras. This is a very interesting problem. In 1996, he studied the conditions that differences of two composition operators are compact. He obtained some examples and a necessary condition closely related to the compactness of one composition operator.(2) Funabashi studied 5-dimensional submanifolds of a nearly Kaehler 6-spherc in the purcly imaginary octonians. Main result is that for any hypersurface of 6-sphere, there exists a grobal quaternion structure on the contact distribution. Moreover he studied tublar hypersurfaces. He iedentified the symplectic group SP (1) with the 3-dimensional sphere and considered parametrized 3-dimcnsional submanifolds in terms of SP (1) -orbits in the 6-sphere.(3) Hashimoto investig … More ated submanifolds theory in a 6-dimensional sphere S^6. A 6-dimensional sphere has an almost Hermitian structure.It was proved that n-dimensional sphere admit almost complex structures except for n*2,6. Also the automorphism group of this almost Hcrmitian structure of S^6 coincide with the exceptional Lie group G_2. The 2-dimensional submanifolds of a 6-dimensional sphere is called the J-holomorphic curves of S^6 if its tangent space is invariant under the almost complex structure. I obtained some classification theorems and a rigidity theorem with respect to the Lie group G_2 about J-holomorphic curves of S^6.(4) Ishizaki has studied the complex differential equations, mainly admissible solutions of first order algebraic differential equations and complex oscillation for an equation of the form f"+A (z) f=0. Complex dynamics theory has been also of our great interest. Study of hypertranscendency has treated from the two points of view, say complex differential theory and complex dynamics theory. Less
(1)1995年,OHNO在单位磁盘上的谐波Borgman空间上调查了Toeplitz和Hankel运营商。主要结果是表征代数特性,有限性和紧凑性。 Hankel操作员的紧凑性与天桥代数之间存在关系。这是一个非常有趣的问题。 1996年,他研究了两个组成算子的差异紧凑的条件。他获得了一些例子和与一个组成算子的紧凑性密切相关的必要条件。(2)在纯粹想象中的octonians中,Funabashi研究了几乎kaehler 6-Sphere的funabashi 5维次符号。主要结果是,对于6个距离的任何超表面,触点分布上都存在全球季节结构。此外,他研究了管状高度曲面。他用3维球体将符号组SP(1)授予了sp(1) - hashimoto研究中的sp(1)孔。一个6维的球体几乎具有荒凉的结构。证明N维球几乎接受了n*2,6以外的几乎复杂的结构。这也是S^6的几乎hcrmitian结构的自动形态组与特殊的Lie组G_2一致。如果其切线空间在几乎复杂的结构下是不变的,则6维球的二维亚策略称为S^6的J旋晶曲线。我获得了一些分类定理和关于谎言组的G_2的分类定理,涉及s^6的J-丝晶曲线。(4)Ishizaki研究了复杂的微分方程,主要是一阶代数代数差分方程的一阶方程和复杂振动的一阶代数方程的解决方案,以及对f”(Z)的较为f = 0。从两种观点(复杂的差异理论和复杂的动力学理论)从两种观点开始处理
项目成果
期刊论文数量(40)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K,Ishizaki(共): "On admissible solutions of algebraic differential equations" Funkcialaj Ekvacioj. 38. 433-442 (1995)
K, Ishizaki (co):“关于代数微分方程的容许解”Funkcialaj Ekvacioj 38. 433-442 (1995)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Hashimoto(共): "Hypersurfaces in a 6-dimensional sphere" J.of karean Math Soc. (近刊).
H.Hashimoto(合著者):“六维球体中的超曲面”J.of karean Math Soc(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Ishizaki and K.Tohge: "On the comlex oscilltion of some linear differential equations" J.Math.Anal.Appl.(to appear).
K.Ishizaki 和 K.Tohge:“关于某些线性微分方程的复杂振荡”J.Math.Anal.Appl.(即将出现)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hideya Hashimoto: "Minimal surfaces in a 4-dimensional sphere" Houston Math. J.21. 449-463 (1995)
Hideya Hashimoto:“4 维球体中的最小曲面”休斯顿数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Ishizaki(共): "On the complex oscillation of some linear differential equations" J,Math.Anal Appl. (近刊).
K. Ishizaki(合著者):“关于某些线性微分方程的复振荡”J,Math.Anal Appl(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OHNO Shuichi其他文献
OHNO Shuichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OHNO Shuichi', 18)}}的其他基金
Researches on the structures of analytic function spaces and linear operators on them
解析函数空间及其线性算子的结构研究
- 批准号:
15K04905 - 财政年份:2015
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Researches on the structures of the spaces of analytic and harmonic functions and operators on them
解析调和函数空间结构及其算子的研究
- 批准号:
24540190 - 财政年份:2012
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
PERFORMANCE IMPROVEMENT OF OFDM BY PILOT-AIDED SPARCECHANNEL ESTIMATION
通过导频辅助空间信道估计改进 OFDM 性能
- 批准号:
22560380 - 财政年份:2010
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Researches on the structures of function spaces of analytic and harmonic functions and operators on them
解析函数和调和函数的函数空间结构及其算子的研究
- 批准号:
20540185 - 财政年份:2008
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Researches on the Spaces of Analytic and Harmonic Functions and Their Operators
解析函数、调和函数空间及其算子的研究
- 批准号:
17540169 - 财政年份:2005
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Researches on Properties of the Spaces of Analytic Functions and Their Operators
解析函数及其算子空间性质的研究
- 批准号:
15540181 - 财政年份:2003
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Researches on Properties of Banach Spaces of Analytic Functions and Their Operators
解析函数及其算子的Banach空间性质研究
- 批准号:
11640179 - 财政年份:1999
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies of The Structures of Analytic Function Spaces and Their Operators
解析函数空间及其算子的结构研究
- 批准号:
09640218 - 财政年份:1997
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)