Kaeler magnetic fields and Carnot spaces
凯勒磁场和卡诺空间
基本信息
- 批准号:11640073
- 负责人:
- 金额:$ 2.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The head investigator studied trajectories for Kaehler magnetic fields on symmetric spaces. His works, a part of which is a joint work with some coinvestigators, can be classified into the following four directions.(1) Mean operators associated with magnetic fieldsIn order to study the relationship between trajectories for Kaehler magnetic fields and Schroedinger operators, the head investigator studied magnetic random walks. On complex space forms the mean operator generated by this magnetic random walk has the same properties as that generated by the geodesic random walk. On the other hand, if we studied a magnetic spherical mean which is derived from potential on unit tangent bundle we found the principal term of the formal expansion was the Schroedinger operator.(2) Circles on complex space formsExtending the notion of trajectories for Kaehler magnetic fields the head investigator studied length spectrum for circles on complex space forms. The moduli space of circles on these space … More s are open rectangles in a Euclidean plane parametrized by geodesic curvature and complex torsion. Concerning the continuity of length spectrum for circles we found it had a natural foliation structure. By use of this structure we clearfied set theoretic properties of length spectrum, the asaymptotic behavior of the number of congruency classes of circles with respect to their length, and the properties of the k-th length spectrum function with respect to the geodesic curvature.(3) Geodesics on geodesic spheres in a rank one symmetric spacesHaving been inspired with the idea in our study on circles we studied lengths of geodesics on a geodesic sphere in a rank one symmetic space, which is famous as an example of Berger sphere. We considered geodesics on a geodesic sphere as curves on a complex space form, and studied their horizontal lifts with respect to the Hopf fibration. We could then treat them as curves in a Euclidean space. We showed the relationship between the radius of a geodesic sphere and length-simplicity of geodesics and clearfied the asymptotic behavior of the number of closed geodesics on a geodesic sphere with respect to their length.(4) Characterizations of submanifolds in complex space formsBy use of properties of circles and helices on complex space forms the head investigator and S. Maeda characterized submanifolds in complex space forms. Their idea stands on the technique of treating geodesic and circles on a submanifold as curves on a complex space form. They characterized homogeneous submanifold, Veronese embeddings and some other important submanifolds. Less
首席研究员研究了对称空间上凯勒磁场的轨迹,其中一部分是与一些共同研究人员的共同工作,可分为以下四个方向:(1)与磁场相关的均值算子。凯勒磁算子和薛定谔算子的轨迹之间的关系,首席研究员研究了磁随机场游走,在复杂空间形式上,由这种磁随机游走生成的均值算子具有与测地随机游走生成的相同的属性。另一方面,如果我们研究从单位切丛上的势导出的磁球平均值,我们发现形式展开的主要项是薛定谔算子。(2)复杂空间形式上的圆扩展了凯勒磁场磁头轨迹的概念研究人员研究了复杂空间形式上的圆的长度谱,这些空间上的圆的模空间是欧几里得平面中的开放矩形,由测地曲率和复数参数化。关于圆的长度谱的连续性,我们发现它具有自然的叶状结构,通过使用这种结构,我们阐明了长度谱的集合理论属性,即圆的同余类数量相对于其长度的渐近行为,以及第k个长度谱函数相对于测地曲率的性质。(3)一阶对称空间中测地球上的测地线受到我们研究中的想法的启发在圆上,我们研究了一级对称空间中测地球上的测地线长度,这是著名的伯杰球的例子。我们将测地球上的测地线视为复杂空间形式上的曲线,并研究了它们的水平升力。然后我们可以将它们视为欧几里得空间中的曲线,我们展示了测地球的半径与测地线的长度简单性之间的关系,并阐明了测地线球上闭合测地线的数量相对于其长度的渐近行为。 (4) 复空间形式中子流形的表征通过使用复空间形式上的圆和螺旋的性质,首席研究员和 S. Maeda 表征了复空间形式中的子流形他们的想法基于将子流形上的测地线和圆视为复杂空间形式上的曲线的技术,他们描述了齐次子流形,Veronese。嵌入和其他一些重要的子流形。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Toshiaki ADACHI: "Length spectrum of circles and Kaehler magnetic fields on complex space forms"Aspects of complex analysis, differential geometry, mathematical physics, and applications, World Scientific. 172-182 (1999)
Toshiaki ADACHI:“复杂空间形式上的圆长度谱和凯勒磁场”复分析、微分几何、数学物理和应用方面,世界科学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Toshiaki ADACHI: "Length spectrum of geodesic sptieves in a non-flat complex space form"Journal of Mathematical Sociaty of Japan.
Toshiaki ADACHI:“非平坦复空间形式中的测地线长度谱”日本数学会杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Toshiaki ADACHI: "Some charaterizations of quaternionic space forms"Proceedings of JAPAN Acadey of Sciences, Series A. 76・10. 168-172 (2000)
Toshiaki ADACHI:“四元空间形式的一些特征”,日本科学院院刊,系列 A. 76・10(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Sadahiro MAEDA: "Geometric meaning of isoparametric hypersurfaces in a real space form"Canadian Mathematical Bulletin. 43. 74-78 (2000)
Sadahiro MAEDA:“实空间形式中等参超曲面的几何意义”加拿大数学公报。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Fumiko OHTSUKA: "Total excess on length surfaces"Matheuiatishe Annalen. 319. 675-706 (2001)
Fumiko OHTSUKA:“长度表面上的总过量”Matheuiatishe Annalen。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ADACHI Toshiaki其他文献
Asymptotic behaviors of trajectories on a Hadamard Kaehler manifold
Hadamard Kaehler 流形上轨迹的渐近行为
- DOI:
10.3836/tjm/1502179311 - 发表时间:
2020 - 期刊:
- 影响因子:0.6
- 作者:
SHI Qingsong;ADACHI Toshiaki - 通讯作者:
ADACHI Toshiaki
ADACHI Toshiaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ADACHI Toshiaki', 18)}}的其他基金
Ideal boundary of a Hadamard manifold and Kaehler magnetic fields
阿达玛流形和凯勒磁场的理想边界
- 批准号:
24540075 - 财政年份:2012
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Kaeler magnetic fields and graphs
凯勒磁场和图表
- 批准号:
20540071 - 财政年份:2008
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ruled real surfaces formed by Kaehler magnetic fields
由凯勒磁场形成的直纹真实表面
- 批准号:
17540072 - 财政年份:2005
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Comparison on bow-shapes for Kaehler magnetic fields
凯勒磁场弓形比较
- 批准号:
14540075 - 财政年份:2002
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
连续调节质子束纵向相干长度及其与氢氮分子碰撞电子俘获反应中的干涉效应研究
- 批准号:11574325
- 批准年份:2015
- 资助金额:73.0 万元
- 项目类别:面上项目
平坦度量空间的若干研究
- 批准号:11201219
- 批准年份:2012
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
弯曲型离子迁移管的初步研究
- 批准号:21205067
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
黎曼面模空间的几何拓扑
- 批准号:10871139
- 批准年份:2008
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Examining the Function of a Novel Protein in the Cardiac Junctional Membrane Complex
检查心脏连接膜复合体中新型蛋白质的功能
- 批准号:
10749672 - 财政年份:2024
- 资助金额:
$ 2.24万 - 项目类别:
Maternal immune activation remodeling of offspring glycosaminoglycan sulfation patterns during neurodevelopment
神经发育过程中后代糖胺聚糖硫酸化模式的母体免疫激活重塑
- 批准号:
10508305 - 财政年份:2023
- 资助金额:
$ 2.24万 - 项目类别:
Development of Next-Generation Mass Spectrometry-based de novo RNA Sequencing for all Modifications
开发适用于所有修饰的下一代基于质谱的从头 RNA 测序
- 批准号:
10581994 - 财政年份:2023
- 资助金额:
$ 2.24万 - 项目类别:
Processivity and Catalytic Mechanism of Aldosterone Synthase
醛固酮合酶的持续合成能力和催化机制
- 批准号:
10600520 - 财政年份:2023
- 资助金额:
$ 2.24万 - 项目类别:
Quorum-sensing mediated communication between pandemic Vibrio cholerae and phage VP882
群体感应介导大流行霍乱弧菌和噬菌体 VP882 之间的通讯
- 批准号:
10601559 - 财政年份:2023
- 资助金额:
$ 2.24万 - 项目类别: