Ruled real surfaces formed by Kaehler magnetic fields

由凯勒磁场形成的直纹真实表面

基本信息

  • 批准号:
    17540072
  • 负责人:
  • 金额:
    $ 2.32万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2007
  • 项目状态:
    已结题

项目摘要

When we study Riemannian manifolds, it is needless to say that geodesics play quite important object. But if we consider the family of all smooth curves, the family of geodesics is a small family. In this reason the head investigator studied Kaehler manifolds by investigating trajectories for Kaehler magnetic fields, which are constant multiples of the Kaehler form1.Comparison theoremsIn order to study Kaehler manifolds of variable holomorphic sectional curvatures, we consider crescents on a ruled real surface formed by trajectory and trajectory-sectors. Under an assumption on sectional curvatures of a Kaehler manifold, we can estimate lengths of circuits of these objects by length of corresponding objects on a complex space form.2.Trajectories for Sasaki magnetic fields on geodesic spheres in a complex space formWe consider Sasaki magnetic fields on odd dimensional manifolds. This corresponds to Kaehler magnetic fields on real eavn dimensional manifolds. Though geodesic spheres in com … More plex space forms are model spaces, properties of trajectories for Sasaki magnetic fields are quite different from properties of trajectories for Kaehler magnetic fields on complex space forms. There are trajectories which have the same length but are not congruent to each other.3.Characterizations of some Kaehler manifolds through isometric immersionsWe study Kaehler manifolds through isometric immersions into real space forms. Since isometric immersions give some structural rigidity on manifolds, we consider the family of curves having points of order 2, which includes the family of trajectories for Kaehler magnetic fields. We can characterize complex space forms immersed by totally umbilic immersions or 1st standard embeddings as those whose induced maps preserve order 2 property and curvature logarithmic derivative. If we weaken the condition on order 2 property to the condition that their extrinsic shapes are of order 2, then we can characterize Hermitian symmetric spaces of rank less than 3 Less
当我们研究Riemanian歧管时,不必说,大地测量机构是一个小家族。 。比较定理的命令,以研究由轨迹和轨迹轨道形成的统治的真实表面上的varia型形态安全性新月形的Kaehler歧管。形式。在复杂空间中,地理球上的sasaki磁场考虑奇数减小的磁场。 Kaehler磁场的轨迹不同。 2,包括Kaehler磁场的轨迹家族。订单2 s的外部形状

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Schur's lemma for K\"ahler manifolds
K"ahler 流形的 Schur 引理
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Adachi;S. Maeda;S. Udagawa
  • 通讯作者:
    S. Udagawa
Kaehler magnetic flows for a product of complex space forms
复杂空间形式产物的凯勒磁流
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Toshiaki;ADACHI;Dai Tamaki;Toshiaki ADACHI;Toshiaki ADACHI;Dai Tamaki;Toshiaki ADACHI;Dai Tamaki;Dai Tamaki;Sadahiro MAEDA;Dai Tamaki;Sadahiro MAEDA;Dai Tamaki;Sadahiro MAEDA;Dai Tamaki;Toshiaki ADACHI
  • 通讯作者:
    Toshiaki ADACHI
Holomorphic helix of proper order 3 on a complex hyperbolic plane
复双曲平面上的真阶 3 全纯螺旋
Geodesic spheres in a nonflat complex space form and their integral curves of characteristic vector fields
非平坦复空间形式的测地球及其特征向量场积分曲线
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Adachi;Y.H. Kim;S. Maeda
  • 通讯作者:
    S. Maeda
Magnetic mean operators on a Kaehler manifold
Kaehler 流形上的磁平均算子
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ADACHI Toshiaki其他文献

Asymptotic behaviors of trajectories on a Hadamard Kaehler manifold
Hadamard Kaehler 流形上轨迹的渐近行为
  • DOI:
    10.3836/tjm/1502179311
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    SHI Qingsong;ADACHI Toshiaki
  • 通讯作者:
    ADACHI Toshiaki

ADACHI Toshiaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ADACHI Toshiaki', 18)}}的其他基金

Ideal boundary of a Hadamard manifold and Kaehler magnetic fields
阿达玛流形和凯勒磁场的理想边界
  • 批准号:
    24540075
  • 财政年份:
    2012
  • 资助金额:
    $ 2.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Kaeler magnetic fields and graphs
凯勒磁场和图表
  • 批准号:
    20540071
  • 财政年份:
    2008
  • 资助金额:
    $ 2.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Comparison on bow-shapes for Kaehler magnetic fields
凯勒磁场弓形比较
  • 批准号:
    14540075
  • 财政年份:
    2002
  • 资助金额:
    $ 2.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Kaeler magnetic fields and Carnot spaces
凯勒磁场和卡诺空间
  • 批准号:
    11640073
  • 财政年份:
    1999
  • 资助金额:
    $ 2.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

高性能仿生鳞片织物成形机理与弹道冲击下动态力学特征
  • 批准号:
    52373058
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
捷变相参雷达弹道目标微动特征提取与识别方法研究
  • 批准号:
    62301295
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
电磁轨道发射用弹丸内弹道振动特性及稳定运行机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
异型截面弹体高速侵彻混凝土靶作用机理及弹道特性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
剪切增稠流体填充角联锁结构复合材料弹道冲击动态响应及破坏机理
  • 批准号:
    12202133
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
  • 批准号:
    2339829
  • 财政年份:
    2024
  • 资助金额:
    $ 2.32万
  • 项目类别:
    Continuing Grant
trajectoryとEMAによるステロイド有害事象の機序解明と予防アプリ開発
使用轨迹和 EMA 阐明类固醇不良事件的机制并开发预防性应用程序
  • 批准号:
    23K24575
  • 财政年份:
    2024
  • 资助金额:
    $ 2.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Multimorbidity in Children and Youth Across the Life-course (MY LIFE): A Long-term Follow-up
儿童和青少年一生中的多重疾病(我的一生):长期随访
  • 批准号:
    483695
  • 财政年份:
    2023
  • 资助金额:
    $ 2.32万
  • 项目类别:
    Operating Grants
Blood pressure trajectory of inpatient rehabilitation stroke patients from the Determining Optimal Post-Stroke Exercise (DOSE) trial over the first 12-months post-stroke
通过确定最佳中风后运动 (DOSE) 试验得出的中风住院康复患者在中风后 12 个月内的血压轨迹
  • 批准号:
    493123
  • 财政年份:
    2023
  • 资助金额:
    $ 2.32万
  • 项目类别:
Comparative single-cell analysis of disease-derived stem cells to identify the cell fate defect on the cell differentiation trajectory
对疾病来源的干细胞进行比较单细胞分析,以确定细胞分化轨迹上的细胞命运缺陷
  • 批准号:
    23H02466
  • 财政年份:
    2023
  • 资助金额:
    $ 2.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了