Kaeler magnetic fields and graphs
凯勒磁场和图表
基本信息
- 批准号:20540071
- 负责人:
- 金额:$ 2.91万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2008
- 资助国家:日本
- 起止时间:2008 至 2011
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In order to study properties of submanifolds in Kaehler manifolds, we consider natural closed 2-forms on submanifolds which are induced by almost contact metric structures. We study motions of electric charged particles of unit speed under actions of Sasakian magnetic fields, which are constant multiples of natural 2forms, on submanifolds. Since strengths of Sasakian magnetic fields acting on charged particles are not uniform, we are interested in the problem whether there exist trajectories which are also curves of order 2. From the viewpoint of classical Frenet-Serre formula, we may say that curves of order 2 are simple. We study submanifolds in complex space forms, which are highly symmetric. We show that there exist such trajectories on real hypersurfaces of type A whose class includs geodesic spheres. We can characterize these real hypersurfaces by the amount of such trajectories. We also show how lengths of closed trajectories which are also curves of order 2 are distributed on the real line.Besides, we give discrete models of Kaehler manifolds. We propose graphs whose edges are colored by 2 colors to be good models. We studied distribution of closed passes on these graphs and show a similarity between the distribution of lengths of closed passes on graphs and that of closed trajectories on Kaehler manifolds.
为了研究Kaehler歧管中亚曼叶的特性,我们考虑了在几乎接触度量结构引起的亚策略上的自然封闭2形。我们研究了sasakian磁场的作用下的电荷电荷颗粒的运动,这些磁场是自然2形的恒定倍数,在亚策略上。由于作用在带电颗粒上的Sasakian磁场的强度并不统一,因此我们对问题是否存在轨迹感兴趣。我们研究了高度对称的复杂空间形式的子延伸。我们表明,在A型的实际超曲面上存在此类轨迹,其类别包括大地球形。我们可以通过此类轨迹的数量来表征这些真实的超曲面。我们还展示了闭合轨迹的长度如何分布在实际线路上。Besides,我们提供了Kaehler歧管的离散模型。我们提出的图形将边缘用两种颜色颜色为良好的模型。我们研究了这些图表上封闭通行证的分布,并在图表上的闭合通道的长度分布与kaehler歧管上的闭合轨迹的分布之间显示出相似性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A characterization of the homogeneous ruled real hypersurface in a complex hyperbolic space
复杂双曲空间中齐次直纹实超曲面的表征
- DOI:
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:K. Lee;K. Moriyasu and K. Sakai;Kazuhiro Sakai;K. Sakai;Kazuhiro Sakai;酒井一博;酒井一博;足立俊明
- 通讯作者:足立俊明
Real hypersurfaces which are contact in a nonflat complex space form
以非平坦复空间形式接触的真实超曲面
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0.5
- 作者:足立俊明・包図雅;足立俊明・包図雅;足立俊明;足立俊明・包図雅;足立俊明;足立俊明・亀田真澄・前田定廣
- 通讯作者:足立俊明・亀田真澄・前田定廣
Behavior of circular trajectories on hypersurfaces of type(A1) in a complex hyperbolic space
复杂双曲空间中(A1)型超曲面上圆形轨迹的行为
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0.6
- 作者:足立俊明・包図雅
- 通讯作者:足立俊明・包図雅
Prime cycles on regular Kaehler graphs
常规凯勒图上的素数周期
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:T.Fukui;A.Harris;A.Isaev;S.Koike;L.Paunescu (編);S.Koike(編);足立俊明
- 通讯作者:足立俊明
ケーラー磁場による軌道に対する1つの離散モデル
一种具有科勒磁场的轨道离散模型
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:S. Koike;L. Paunescu;足立俊明;小池敏司;足立俊明;S.Koike;足立俊明;小池敏司;足立俊明;S.Koike;小池敏司;足立俊明;小池敏司;足立俊明;足立俊明;小池敏司;前田定廣・足立俊明・亀田真澄;小池敏司;小池敏司;足立俊明;小池敏司;足立俊明;小池敏司;前田定廣・足立俊明;小池敏司;足立俊明;小池敏司;小池敏司;Toshiaki ADACHI;小池敏司;足立俊明
- 通讯作者:足立俊明
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ADACHI Toshiaki其他文献
Asymptotic behaviors of trajectories on a Hadamard Kaehler manifold
Hadamard Kaehler 流形上轨迹的渐近行为
- DOI:
10.3836/tjm/1502179311 - 发表时间:
2020 - 期刊:
- 影响因子:0.6
- 作者:
SHI Qingsong;ADACHI Toshiaki - 通讯作者:
ADACHI Toshiaki
ADACHI Toshiaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ADACHI Toshiaki', 18)}}的其他基金
Ideal boundary of a Hadamard manifold and Kaehler magnetic fields
阿达玛流形和凯勒磁场的理想边界
- 批准号:
24540075 - 财政年份:2012
- 资助金额:
$ 2.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ruled real surfaces formed by Kaehler magnetic fields
由凯勒磁场形成的直纹真实表面
- 批准号:
17540072 - 财政年份:2005
- 资助金额:
$ 2.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Comparison on bow-shapes for Kaehler magnetic fields
凯勒磁场弓形比较
- 批准号:
14540075 - 财政年份:2002
- 资助金额:
$ 2.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Kaeler magnetic fields and Carnot spaces
凯勒磁场和卡诺空间
- 批准号:
11640073 - 财政年份:1999
- 资助金额:
$ 2.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Zeta functions for Kaehler magnetic fields
凯勒磁场的 Zeta 函数
- 批准号:
20K03581 - 财政年份:2020
- 资助金额:
$ 2.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spectra of Laplacians for Kaehler graphs
凯勒图的拉普拉斯谱
- 批准号:
16K05126 - 财政年份:2016
- 资助金额:
$ 2.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction of harmonic maps into non-compact symmetric spaces via loop groups and applications to surface theory
通过环群将调和映射构造为非紧对称空间及其在表面理论中的应用
- 批准号:
15K04834 - 财政年份:2015
- 资助金额:
$ 2.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction of surfaces in homogeneous spaces via spin geometry and loop groups
通过自旋几何和循环群在均匀空间中构造表面
- 批准号:
24540063 - 财政年份:2012
- 资助金额:
$ 2.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ideal boundary of a Hadamard manifold and Kaehler magnetic fields
阿达玛流形和凯勒磁场的理想边界
- 批准号:
24540075 - 财政年份:2012
- 资助金额:
$ 2.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)