正値対称系に対する極大非負な境界値問題

正值对称系统的最大非负边值问题

基本信息

  • 批准号:
    05740095
  • 负责人:
  • 金额:
    $ 0.64万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
  • 财政年份:
    1993
  • 资助国家:
    日本
  • 起止时间:
    1993 至 无数据
  • 项目状态:
    已结题

项目摘要

1.境界が重複度一定で特性的な場合の対称双曲系に対する初期値境界値問題に関して。1)極大非負な境界条件の下で、上記問題の解が高階の可微分性まで含めて滑らかであることを示し、この結果を発表論文リスト[3]にまとめた。又、このとき重みつきの非等方的ソボレフ空間の、トレース定理を明らかにすることが重要となるので、この部分を発表論文リスト[2]としてまとめた。2)特に初期条件に対する「適合性」について論ずるときには、Dで求めた解の時間変数に関する強連続性を示すことが必要となる。この時間変数に関する強連続性を、Majdaのコ-シ-問題に対して用いた議論と、Rauchの提出した接線方向への軟化子(及びその変形)を使うことにより示すことができたので、現在論文としてまとめている。2.境界が特性的で、かつその特性根の重複度が一定でない場合の対称双曲系に対する初期値境界値問題に関して。ある重みを用いたエネルギー法により、たとえ特性根の重複度が変わったとしても、上記問題がH^S-wellpesed(S≧1)となる為の十分条件を与えることができた。また、この十分条件を充たす2×2 systemの具体例を構成した。しかし、磁気流体・浅水波等に対する物理的境界値問題において、どの様な現象が起こっているかについては、何ら満足のいく結果は得られなかった。3.非圧縮Euler方程式と渦度の方程式に関して。有界領域における非圧縮Euler流の滑らかさが渦度のmaximum normに支配されることを、境界つきリーマン多様体上の小平-Hodge分解を使って示すことができたので、発表論文リスト[1]にまとめ公表した。
1。关于对称双曲线系统的初始边界值问题,当时边界是恒定且特征的。 1)我们证明了上述问题的解决方案是平稳的,包括在最大非负边界条件下的高阶可不同性,结果在已发表的论文列表中汇编[3]。此外,重要的是要阐明加权各向异性Sobolev空间的痕量定理,因此本节已被编译为已发表论文的列表[2]。 2)在讨论针对初始条件的“适合度”时,必须通过使用Majda的共同问题和切向软性剂(及其变量)提交的Rauch提交的讨论来证明,可以证明在D中获得的解决方案的时间变量很强的连续性。 2。关于对称双曲系统的初始边界值问题,当边界是特征性的,并且其特征根的重叠不是恒定的。通过使用一定重量的能量方法,即使更改了特征根的重叠程度,我们也能够提供足够的条件,以使上述问题被H^s-Wellpesse(s≧1)。此外,构建了满足这些足够条件的2x2系统的具体示例。但是,对于磁性流体的物理边界值问题,浅水波等的物理边界值问题,尚无令人满意的结果。3。关于未压缩的Euler方程和涡度方程。可以在有限的黎曼流形上使用kodaira-hodge分解来证明,有界区域中未压缩的欧拉流的平滑度以涡旋的最大涡度为主,并且已在已发表的论文列表中编译为[1]。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Ohno: "The initial Beanciary Value Problem for Linear Symmetric Hyperbolic Systems with Buindary Characteristic of Constant Multiplicity" Journal of Mathiematics of Kyoto University. (To appear).
M.Ohno:“具有恒定多重性的Buindary 特征的线性对称双曲系统的初始Beanciary 值问题”京都大学数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

柳沢 卓其他文献

柳沢 卓的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('柳沢 卓', 18)}}的其他基金

分解定理に基づく流体および電磁気学に現れる境界値問題に対する新たな解析手法の展開
基于分解定理开发流体和电磁学边值问题的新分析方法
  • 批准号:
    22K03375
  • 财政年份:
    2022
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
特異摂動極限として流体及び電磁気学に現れる双曲系境界値問題
在流体和电磁学中作为奇异扰动极限出现的双曲边值问题
  • 批准号:
    11874028
  • 财政年份:
    1999
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
流体及び電磁流体力学にあらわれる対称双曲系の特性的境界値問題
流体和磁流体动力学中对称双曲系统的特征边值问题
  • 批准号:
    07740107
  • 财政年份:
    1995
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
磁氣流体力学に現われる準線型対称双曲系の初期境界値問題
磁流体动力学中次线性对称双曲系统的初边值问题
  • 批准号:
    01740093
  • 财政年份:
    1989
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似国自然基金

Ginzburg-Landau 型发展方程的拓扑缺陷以及相关问题研究
  • 批准号:
    11071206
  • 批准年份:
    2010
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
拟线性双曲型方程组的理论及数值分析
  • 批准号:
    10371124
  • 批准年份:
    2003
  • 资助金额:
    15.0 万元
  • 项目类别:
    面上项目

相似海外基金

Microlocal Analysis and Hyperbolic Dynamics
微局域分析和双曲动力学
  • 批准号:
    2400090
  • 财政年份:
    2024
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Continuing Grant
Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
  • 批准号:
    24K06777
  • 财政年份:
    2024
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conference: Moving to higher rank: from hyperbolic to Anosov
会议:迈向更高级别:从双曲线到阿诺索夫
  • 批准号:
    2350423
  • 财政年份:
    2024
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Standard Grant
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
  • 批准号:
    2349575
  • 财政年份:
    2024
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Standard Grant
Complex Hyperbolic Lattices
复双曲格子
  • 批准号:
    2871942
  • 财政年份:
    2024
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了