双曲的ガウス写像による3次元双曲型空間内の平均曲率1の曲面の構成

使用双曲高斯映射在 3 维双曲空间中构建平均曲率为 1 的曲面

基本信息

  • 批准号:
    05740056
  • 负责人:
  • 金额:
    $ 0.58万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
  • 财政年份:
    1993
  • 资助国家:
    日本
  • 起止时间:
    1993 至 无数据
  • 项目状态:
    已结题

项目摘要

研究計画に基づき、定曲率-1の3次元双曲型空間H^3内の完備平均曲率1の曲面について研究を行い、下記のような成果をおさめた。1.H^3内の平均曲率1の曲面に対して、双曲的Guass写像と第二Guass写像の二つが定義される。Wayne Rossman氏、山田光太郎氏との共同研究により、これらの曲面に対し、二つのGauss写像Gとgを入れ換える操作によって、その双対曲面が構成され、-方の合同変形が他方の非自明な変形に対応することを示し、その関係を明らかにした。2.さらに、上述の結果を用いて、種数が1以上のH^3内の完備有限全曲率をもつ平均曲率1の曲面に対し、高い対称性をもつ例を、対応するR^3の極小曲面の変形として数多く構成することに成功した。(種数0の場合はすでに筆者等によって多くの例が知られている。)以上の成果について、研究発表を行なうとともに、幾何学、解析学の図書を購入し、多くの研究者と研究連絡を行なった。
根据研究方案,我们对常曲率为-1的三维双曲空间H^3中的完全平均曲率为1的曲面进行了研究,得到了以下结果。 1.对于H^3中平均曲率为1的曲面,定义了两种类型:双曲高斯图和第二高斯图。通过与 Wayne Rossman 和 Kotaro Yamada 的联合研究,我们通过交换两个高斯映射 G 和 g 构建了这些表面的对偶表面,并且其中一个的全等变形是另一个的非平凡变形。他们一一对应,明确了他们之间的关系。 2.此外,利用上述结果,对于亏格1或以上的H^3中具有完全有限总曲率的平均曲率1的曲面,可以使用相应的R^3计算出具有高对称性的示例,我们成功地构造了许多最小曲面的变化。 (就属0而言,许多例子是作者和其他人已经知道的。)关于上述结果,我们将展示我们的研究,购买几何和分析方面的书籍,并与许多研究人员进行交流。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

梅原 雅顕其他文献

半正定値計量と曲面の特異点
曲面的半定度量和奇点
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    菅晃一;楊金峰;小方厚;近藤孝文;神戸正雄;野澤一太;樋川智洋;吉田陽一;山本 樹;Takeshi Saito;梅原 雅顕
  • 通讯作者:
    梅原 雅顕
Geometry of Surfaces with singularities
具有奇点的表面几何
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    都甲将;小島尚;毛屋公孝;田中和真;徐鉉雄;板垣奈穂;古閑一憲;白谷正治;Kaoru Ono;楊金峰;山本 樹;T. Uemura;Takeshi Saito;Y. Otake;梅原 雅顕
  • 通讯作者:
    梅原 雅顕
Compact neutron system on site -RANS towards industrial use and social infrastructure safety
现场紧凑型中子系统 -RANS 致力于工业用途和社会基础设施安全
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    森研人;山下大輔;徐鉉雄;板垣奈穂;古閑一憲;白谷正治;Kaoru Ono;Yoshie OTAKE;梅原 雅顕;山本 樹;竹田雅好;Kaoru Ono;Takeshi Saito;J. Yang;Yoshie Otake
  • 通讯作者:
    Yoshie Otake
極短周期アンジュレータ磁気回路の開発 III
超短周期波荡器磁路的研制Ⅲ
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    森研人;山下大輔;徐鉉雄;板垣奈穂;古閑一憲;白谷正治;Kaoru Ono;Yoshie OTAKE;梅原 雅顕;山本 樹
  • 通讯作者:
    山本 樹
Lagrangian Floer theory - around generating criterion for Fukaya category
拉格朗日弗洛尔理论 - 围绕深谷范畴的生成准则
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    都甲将;小島尚;毛屋公孝;田中和真;徐鉉雄;板垣奈穂;古閑一憲;白谷正治;Kaoru Ono;楊金峰;山本 樹;T. Uemura;Takeshi Saito;Y. Otake;梅原 雅顕;Kaoru Ono
  • 通讯作者:
    Kaoru Ono

梅原 雅顕的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('梅原 雅顕', 18)}}的其他基金

特異点の微分幾何学およびその応用
奇点微分几何及其应用
  • 批准号:
    23K20794
  • 财政年份:
    2024
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Differential geometrey of singularities and its applications
奇点微分几何及其应用
  • 批准号:
    21H00981
  • 财政年份:
    2021
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
3次元双曲型空間の平均曲率1の曲面
3 维双曲空间中平均曲率为 1 的曲面
  • 批准号:
    07740060
  • 财政年份:
    1995
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
3次元ユークリッド空間の極小曲面とその自然な双曲型空間への変形について
三维欧几里得空间中的极小曲面及其向双曲空间的自然变换
  • 批准号:
    06740062
  • 财政年份:
    1994
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
3次元双曲型空間内の完備平均曲率一定の曲面について
关于 3 维双曲空间中具有恒定平均曲率的完整曲面
  • 批准号:
    04740038
  • 财政年份:
    1992
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
3次元定曲率空間の中の平均曲率一定の曲面について
关于3维常曲率空间中具有常平均曲率的曲面
  • 批准号:
    03740009
  • 财政年份:
    1991
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
リーマン面から球面への非正則な調和写像の研究
黎曼曲面到球面的不规则调和映射研究
  • 批准号:
    63740009
  • 财政年份:
    1988
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

Complex quartic differentials on surfaces
曲面上的复四次微分
  • 批准号:
    21K03228
  • 财政年份:
    2021
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of value distribution of Gauss maps and its applications to global property of immersed surfaces in space forms
高斯图值分布及其在空间形式浸没曲面全局特性中的应用研究
  • 批准号:
    19K03463
  • 财政年份:
    2019
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Principal distributions on surfaces in various spaces
不同空间表面上的主分布
  • 批准号:
    17K05221
  • 财政年份:
    2017
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study on the relationship between the global property of immersed surfaces in space forms and the behavior of their Gauss maps
空间形式浸没表面的全局特性与其高斯图行为之间的关系研究
  • 批准号:
    24740044
  • 财政年份:
    2012
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Global studies of principal distributions on surfaces and researches of principal distributions on various submanifolds
曲面上主分布的全局研究和各子流形上主分布的研究
  • 批准号:
    24740048
  • 财政年份:
    2012
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了