Wireless Microsystems for Augmented Machine and Human Intelligence
用于增强机器和人类智能的无线微系统
基本信息
- 批准号:RGPIN-2022-04228
- 负责人:
- 金额:$ 4.66万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Disruptive technologies like artificial intelligence, the internet of things and augmented reality are transforming our lives. A joining with microsystems is inevitable to fully realize their potential. Microsystems are millimeter-scale systems that include microelectronics for processing or communication and transducers for sensing and actuation. They can offer the highly integrated functionalities required to create sensor nodes to densely feed the ever-increasing appetite of these technologies for data, and the compactness they require to provide feedback to users or machines (e.g., with a wearable). Accordingly, microsystems can augment machine and human intelligence by enabling the capabilities for these technologies to thrive. The challenges lie not only in miniaturization, but also in low-power operation and wireless connectivity for ubiquitous deployment and maximal enablement. Microelectromechanical systems (MEMS) are a natural choice to fulfil the sensing and actuation functionalities in microsystems, and integrated circuits (IC) are well-suited to create their electronics. Still, IC and MEMS remain hard to integrate due to fabrication process incompatibilities, design intricacies and co-optimization challenges. Furthermore, energy efficiency complicates integration, as microsystems need to operate in wireless wearables and nodes with very stringent energy constraints, making the energy draw of these functionalities currently too prohibitive. Their efficiency can be increased by reducing their components' power consumption and harvesting energy. The long term objective is to create a new class of energy-efficient microsystems that will integrate in a unique way wireless connectivity, energy harvesting, transducers and their interfaces into a miniature form-factor. We will focus on 3 short term objectives to advance toward the LTO: 1) Elaborate above-IC-compatible MEMS transducers that support multi-sensing functions and leverage resonant operation along with carbon materials to enhance performance. 2) Design energy-efficient wireless transceivers and interface circuits for integration with MEMS transducers. 3) Create mechanical energy harvesters to improve the efficiency of microsystems by using low-temperature cofired ceramics to increase energy generation. The outcome will be a new integration platform enabling microsystems that can be used in a variety of environments and applications to augment human and machine intelligence. This will yield advances in the fields of MEMS, energy harvesting, sensing, low-power ICs and integration, which represent significant contributions to research in Canada. These novel devices will have an overarching applicability and impact sectors such as transportation, healthcare, environment and industrial processes, strengthening Canada's competitiveness. The 11 HQP trained (2 BEng, 4 MASc, 5 PhD) will gain valuable and marketable advanced manufacturing and design skills for the Canadian economy.
人工智能、物联网和增强现实等颠覆性技术正在改变我们的生活。为了充分发挥微系统的潜力,与微系统的结合是不可避免的。微系统是毫米级系统,包括用于处理或通信的微电子器件以及用于传感和驱动的传感器。它们可以提供创建传感器节点所需的高度集成的功能,以密集地满足这些技术对数据不断增长的需求,以及向用户或机器(例如,可穿戴设备)提供反馈所需的紧凑性。因此,微系统可以通过使这些技术的能力蓬勃发展来增强机器和人类的智能。挑战不仅在于小型化,还在于低功耗运行和无线连接以实现无处不在的部署和最大程度的实现。微机电系统 (MEMS) 是实现微系统中的传感和驱动功能的自然选择,而集成电路 (IC) 非常适合创建其电子产品。尽管如此,由于制造工艺不兼容、设计复杂性和协同优化挑战,IC 和 MEMS 仍然难以集成。此外,能源效率使集成变得复杂,因为微系统需要在具有非常严格的能源限制的无线可穿戴设备和节点中运行,使得目前这些功能的能源消耗过于高昂。通过降低组件的功耗和收集能量可以提高它们的效率。 长期目标是创建新型节能微系统,以独特的方式将无线连接、能量收集、传感器及其接口集成到微型外形中。我们将重点关注 3 个短期目标,以实现 LTO:1) 精心设计与 IC 兼容的 MEMS 传感器,支持多传感功能,并利用谐振操作和碳材料来提高性能。 2) 设计节能无线收发器和接口电路,以便与MEMS传感器集成。 3) 创建机械能量收集器,通过使用低温共烧陶瓷来增加能量产生,从而提高微系统的效率。结果将是一个新的集成平台,使微系统能够在各种环境和应用中使用,以增强人类和机器的智能。这将在 MEMS、能量收集、传感、低功耗 IC 和集成领域取得进步,这对加拿大的研究做出了重大贡献。这些新颖的设备将具有全面的适用性,并对交通、医疗保健、环境和工业流程等行业产生影响,从而增强加拿大的竞争力。接受培训的 11 名 HQP(2 名工学士、4 名硕士、5 名博士)将为加拿大经济获得有价值且适销对路的先进制造和设计技能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nabki, Frederic其他文献
Nabki, Frederic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nabki, Frederic', 18)}}的其他基金
Compact and Energy Efficient Wireless Microelectromechanical Sensing Systems
紧凑且节能的无线微机电传感系统
- 批准号:
RGPIN-2016-04871 - 财政年份:2021
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Compact and Energy Efficient Wireless Microelectromechanical Sensing Systems
紧凑且节能的无线微机电传感系统
- 批准号:
RGPIN-2016-04871 - 财政年份:2021
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Compact non-invasive ultrasonic flow and wind speed sensors based on micromachined ultrasonic transducers compatible with above-IC integration
基于与 IC 集成兼容的微机械超声换能器的紧凑型非侵入式超声流量和风速传感器
- 批准号:
543712-2019 - 财政年份:2021
- 资助金额:
$ 4.66万 - 项目类别:
Collaborative Research and Development Grants
Compact non-invasive ultrasonic flow and wind speed sensors based on micromachined ultrasonic transducers compatible with above-IC integration
基于与 IC 集成兼容的微机械超声换能器的紧凑型非侵入式超声流量和风速传感器
- 批准号:
543712-2019 - 财政年份:2021
- 资助金额:
$ 4.66万 - 项目类别:
Collaborative Research and Development Grants
Compact non-invasive ultrasonic flow and wind speed sensors based on micromachined ultrasonic transducers compatible with above-IC integration
基于与 IC 集成兼容的微机械超声换能器的紧凑型非侵入式超声流量和风速传感器
- 批准号:
543712-2019 - 财政年份:2020
- 资助金额:
$ 4.66万 - 项目类别:
Collaborative Research and Development Grants
Compact non-invasive ultrasonic flow and wind speed sensors based on micromachined ultrasonic transducers compatible with above-IC integration
基于与 IC 集成兼容的微机械超声换能器的紧凑型非侵入式超声流量和风速传感器
- 批准号:
543712-2019 - 财政年份:2020
- 资助金额:
$ 4.66万 - 项目类别:
Collaborative Research and Development Grants
Compact and Energy Efficient Wireless Microelectromechanical Sensing Systems
紧凑且节能的无线微机电传感系统
- 批准号:
RGPIN-2016-04871 - 财政年份:2020
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Compact and Energy Efficient Wireless Microelectromechanical Sensing Systems
紧凑且节能的无线微机电传感系统
- 批准号:
RGPIN-2016-04871 - 财政年份:2020
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Compact non-invasive ultrasonic flow and wind speed sensors based on micromachined ultrasonic transducers compatible with above-IC integration
基于与 IC 集成兼容的微机械超声换能器的紧凑型非侵入式超声流量和风速传感器
- 批准号:
543712-2019 - 财政年份:2019
- 资助金额:
$ 4.66万 - 项目类别:
Collaborative Research and Development Grants
Compact and Energy Efficient Wireless Microelectromechanical Sensing Systems
紧凑且节能的无线微机电传感系统
- 批准号:
RGPIN-2016-04871 - 财政年份:2019
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
CAREER: Radio Frequency Piezoelectric Acoustic Microsystems for Efficient and Adaptive Front-End Signal Processing
职业:用于高效和自适应前端信号处理的射频压电声学微系统
- 批准号:
2339731 - 财政年份:2024
- 资助金额:
$ 4.66万 - 项目类别:
Continuing Grant
CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
- 批准号:
2340799 - 财政年份:2024
- 资助金额:
$ 4.66万 - 项目类别:
Continuing Grant
Ultra-precision machining of optoelectronics and microsystems (UPROAR)
光电和微系统超精密加工(UPROAR)
- 批准号:
EP/W024772/1 - 财政年份:2023
- 资助金额:
$ 4.66万 - 项目类别:
Research Grant
DIrectional and SCalable (DISC) Microelectrode Array for Speech Decoding
用于语音解码的定向和可扩展 (DISC) 微电极阵列
- 批准号:
10513043 - 财政年份:2023
- 资助金额:
$ 4.66万 - 项目类别:
Soft wireless multimodal cardiac implantable devices for long-term investigating heart failure pathogenesis
用于长期研究心力衰竭发病机制的软无线多模式心脏植入装置
- 批准号:
10735395 - 财政年份:2023
- 资助金额:
$ 4.66万 - 项目类别: