CAREER: Radio Frequency Piezoelectric Acoustic Microsystems for Efficient and Adaptive Front-End Signal Processing

职业:用于高效和自适应前端信号处理的射频压电声学微系统

基本信息

  • 批准号:
    2339731
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-09-01 至 2029-08-31
  • 项目状态:
    未结题

项目摘要

This project responds to the escalating demand for advanced radio-frequency front-end (RFFE) signal processing components in mobile devices, driven by the ever-expanding landscape of wireless connectivity. The imperative to integrate more RFFE elements within the confined space and power constraints of handheld devices is underscored by the surge in 5G/6G technology, necessitating compact hardware with low power consumption. Our overarching vision is to simplify RFFE complexity and enable superior transceivers by developing chip-scale functionalities with smaller size, higher efficiency and more tunability. Among RFFE components, piezoelectric acoustic microsystems emerge as a key solution, boasting four orders of magnitude smaller sizes and lower losses than conventional electromagnetic (EM) counterparts. Currently dominating RFFE filter solutions in the sub-6-GHz spectrum, these microsystems hold the potential to revolutionize signal processing if extended into the millimeter-wave (mm-wave) spectrum. Hence, overcoming longstanding challenges related to existing acoustic platforms and device designs in mm-wave spectrum is the primary objective of this proposal. The project's broader impacts encompass societal benefits through innovations in wireless technologies and their applications, alongside educational outreach initiatives aimed at inspiring the next generation of scientists and engineers. Committed to STEM education, the project closely integrates research into undergraduate and graduate curricula, mentoring of students, and K-12 learning modules. The research will be closely integrated with undergraduate-level course of Microwave Engineering and graduate-level course of Microelectromechanical Systems. Dissemination through webinars events ensures wide-reaching impact, and industry collaboration fosters practical applications of research findings in RF acoustics. The technologies enabled by our project have the potential to significantly lower power consumption in the power-hungry RFFE, which presently accounts for approximately 30% of power usage in smartphones, contributing to longer battery life and lower energy consumption toward a low carbon economy.This CAREER project is dedicated to advancing miniature piezoelectric acoustic devices for efficient and adaptive RFFE signal processing, with a specific focus on the challenging mm-wave spectrum. The technical strategy comprises three interrelated research thrusts addressing critical gaps in current technologies: 1) development of mm-wave low-loss acoustic platforms: pioneering low-loss and wideband thin-film lithium niobate (LN) platforms leveraging higher-order Lamb modes to facilitate acoustic transducers and waveguides beyond 30 GHz; 2) RF acoustic traveling-wave signal processing components: designing compact traveling-wave RFFE signal processing elements using patterned sub-wavelength metallic structures and piezoelectric transducers on LN thin films, contributing to the miniaturization of acoustic devices whilst maintaining low loss; 3) adaptive piezoelectric device tuning: investigating an efficient tuning mechanism for adaptive piezoelectric devices, utilizing electrostatically actuated metallic beams near the piezoelectric surface, enhancing device performance, enabling applications in dynamic wireless environments. The proposed compact size and adaptivity of acoustic microsystems may drive further miniaturization of wireless transceiver hardware with lower power budget.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着无线连接领域不断扩大,移动设备对先进射频前端 (RFFE) 信号处理组件的需求不断增长,该项目旨在满足这一需求。 5G/6G 技术的激增凸显了在手持设备的有限空间和功率限制内集成更多 RFFE 元件的必要性,从而需要具有低功耗的紧凑硬件。我们的总体愿景是通过开发尺寸更小、效率更高、可调谐性更强的芯片级功能来简化 RFFE 复杂性并实现卓越的收发器。在 RFFE 组件中,压电声学微系统成为一种关键解决方案,其尺寸比传统电磁 (EM) 组件小四个数量级,损耗更低。目前,这些微系统在 6 GHz 以下频谱中占主导地位的 RFFE 滤波器解决方案,如果扩展到毫米波 (mm-wave) 频谱,则有可能彻底改变信号处理。因此,克服与毫米波频谱中现有声学平台和设备设计相关的长期挑战是该提案的主要目标。该项目的更广泛影响包括通过无线技术及其应用的创新带来的社会效益,以及旨在激励下一代科学家和工程师的教育推广计划。该项目致力于 STEM 教育,将研究紧密融入本科生和研究生课程、学生指导和 K-12 学习模块中。该研究将与本科生课程《微波工程》和研究生课程《微机电系统》紧密结合。通过网络研讨会活动进行传播可确保产生广泛的影响,行业合作可促进射频声学研究成果的实际应用。我们项目支持的技术有可能显着降低高耗电 RFFE 的功耗,目前 RFFE 约占智能手机用电量的 30%,有助于延长电池寿命并降低能耗,从而实现低碳经济。 CAREER 项目致力于开发微型压电声学器件,以实现高效、自适应 RFFE 信号处理,特别关注具有挑战性的毫米波频谱。该技术战略包括三个相互关联的研究重点,旨在解决当前技术中的关键差距:1)开发毫米波低损耗声学平台:开创性的低损耗宽带薄膜铌酸锂(LN)平台,利用高阶兰姆模式促进超过 30 GHz 的声学换能器和波导; 2)射频声学行波信号处理元件:利用LN薄膜上的图案化亚波长金属结构和压电换能器设计紧凑的行波RFFE信号处理元件,有助于声学器件的小型化,同时保持低损耗; 3) 自适应压电器件调谐:研究自适应压电器件的高效调谐机制,利用压电表面附近的静电驱动金属梁,增强器件性能,实现动态无线环境中的应用。所提出的声学微系统的紧凑尺寸和适应性可能会推动无线收发器硬件进一步小型化,同时降低功耗。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ruochen Lu其他文献

Low-Loss and Wideband Acoustic Delay Lines
低损耗宽带声学延迟线
Gigahertz Low-Loss and Wideband S0 Mode Lithium Niobate Acoustic Delay Lines
千兆赫低损耗宽带 S0 模式铌酸锂声学延迟线
Accurate Extraction of Large Electromechanical Coupling in Piezoelectric MEMS Resonators
压电 MEMS 谐振器中大型机电耦合的精确提取
  • DOI:
    10.1109/jmems.2019.2892708
  • 发表时间:
    2019-01-23
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Ruochen Lu;Ming;Yansong Yang;T. Manzaneque;S. Gong
  • 通讯作者:
    S. Gong
Trilayer Periodically Poled Piezoelectric Film Lithium Niobate Resonator
三层周期性极化压电薄膜铌酸锂谐振器
  • DOI:
    10.1109/ius51837.2023.10306831
  • 发表时间:
    2023-09-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jack Kramer;K. Huynh;Ryan Tetro;Lezli Matto;Omar A. Barrera;Vakhtang Chulukhadze;Sinwoo Cho;Dorian P. Luccioni;Luca Colombo;M. Goorsky;Ruochen Lu
  • 通讯作者:
    Ruochen Lu
Analysis and Removal of Spurious Response in SH0 Lithium Niobate MEMS Resonators
SH0铌酸锂MEMS谐振器杂散响应的分析与消除

Ruochen Lu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于群智信息感知模式的WiFi室内定位系统中Radio Map构建方法
  • 批准号:
    61571162
  • 批准年份:
    2015
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
数据驱动的Multi-Radio MANET通信协议的研究
  • 批准号:
    61370222
  • 批准年份:
    2013
  • 资助金额:
    73.0 万元
  • 项目类别:
    面上项目
新型非对称频分双工系统及其射频关键技术研究
  • 批准号:
    61102055
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于绿色AP的WLAN室内定位算法研究
  • 批准号:
    61101122
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
Multi-Radio传感器网络通信协议关键技术研究
  • 批准号:
    61070193
  • 批准年份:
    2010
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Development of Radio Frequency Non-Invasive Nanosecond Pulse Therapeutic Devices
职业:射频非侵入性纳秒脉冲治疗装置的开发
  • 批准号:
    2341047
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
7T MRI as a potential tool for detection of pathology in Alzheimer's disease
7T MRI 作为检测阿尔茨海默病病理的潜在工具
  • 批准号:
    10349883
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
Non-contrast 3D T1p Mapping for Myocardial Fibrosis Quantification of Pediatric Cardiomyopathy Patients
用于小儿心肌病患者心肌纤维化定量的非对比 3D T1p 映射
  • 批准号:
    10351919
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
Wearable RF-EEG Cap for closed loopTMS/fMRI/EEG Applications
适用于闭环 TMS/fMRI/EEG 应用的可穿戴 RF-EEG 帽
  • 批准号:
    10688279
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
Non-contrast 3D T1p Mapping for Myocardial Fibrosis Quantification of Pediatric Cardiomyopathy Patients
用于小儿心肌病患者心肌纤维化定量的非对比 3D T1p 映射
  • 批准号:
    10579868
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了