CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation

职业:SHF:用于节能实时传感、决策和适应的仿生微系统

基本信息

  • 批准号:
    2340799
  • 负责人:
  • 金额:
    $ 59.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-06-01 至 2029-05-31
  • 项目状态:
    未结题

项目摘要

Contemporary artificial intelligence systems typically do not adapt to their environment in real time, are very power hungry, and are typically developed in isolation from the underlying hardware. However, biological intelligence has addressed these limitations, being energy-efficient, adaptable, and well-integrated with the underlying substrate. Using biological intelligence as the guiding principle, this project develops microelectronic systems that can efficiently, sense physical signals from their environment, make real-time decisions, and adapt and learn with minimal energy usage. By drawing inspiration from biology, this project blurs the distinction between sensing, computation, and algorithm by seamless integration of memory, computing, and sensing and a learning algorithm. Through mirroring this biological model, the project seeks to develop the next generation autonomous intelligent systems with applications ranging from smarter cellphones to improved brain-machine interfaces. The outlined educational activities will enable collaboration with industrial partners and historically black colleges and universities to enable cutting edge microelectronic education to enable the domestic workforce to meet the strategic semiconductor needs of the Nation.The project co-designs continual learning algorithms with cutting-edge, energy-efficient, microelectronic designs that leverage emerging devices in the form of Ferroelectric Field-Effect Transistors (FeFETs) to enable next-generation, energy-efficient, adaptive hardware for sensing, decision-making, and learning. Analog-to-Feature converter front-end systems leveraging FeFETs as programmable transconductances will be designed to acquire analog input and extract pertinent learned features. These subsystems will feed downstream FeFET-based compute-in-memory (CIM) circuits with custom-designed circuits to alleviate the analog-to-digital converter bottleneck currently limiting most CIM architectures. Static Random Access Memory will augment FeFET structures to enable on-chip learning and dynamic reconfigurability. In lockstep with the underlying hardware, tailored continual learning algorithms will be co-designed with the analog-to-digital converters and the FeFET array to endow the system with energy-efficient resilience and adaptation. Microelectronic systems designed using the presented approach could see wide ranging applications from brain-computer-interfaces and implantable systems to blind waveform classification for wireless systems. To validate the approach, an integrated circuit will be fabricated and measured. These will also serve to provide data to further refine and calibrate software models for performance evaluation and design-space exploration. This project will ultimately develop components critical for biologically inspired, energy-efficient, autonomous agents.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当代人工智能系统通常不能实时适应环境,非常耗电,并且通常是与底层硬件隔离开发的。然而,生物智能已经解决了这些局限性,具有高能效、适应性强,并且与底层基质良好集成。该项目以生物智能为指导原则,开发微电子系统,能够有效地感知环境中的物理信号,做出实时决策,并以最少的能源消耗进行适应和学习。该项目从生物学中汲取灵感,通过内存、计算、传感和学习算法的无缝集成,模糊了传感、计算和算法之间的区别。通过反映这种生物模型,该项目旨在开发下一代自主智能系统,其应用范围从更智能的手机到改进的脑机接口。概述的教育活动将促进与工业合作伙伴和历史悠久的黑人学院和大学的合作,以实现尖端的微电子教育,使国内劳动力能够满足国家的战略半导体需求。该项目与尖端的、节能的微电子设计,利用铁电场效应晶体管 (FeFET) 等新兴器件来实现下一代节能、自适应硬件的传感、决策和学习。利用 FeFET 作为可编程跨导的模拟到特征转换器前端系统将被设计为获取模拟输入并提取相关的学习特征。这些子系统将为下游基于 FeFET 的内存计算 (CIM) 电路提供定制设计的电路,以缓解目前限制大多数 CIM 架构的模数转换器瓶颈。静态随机存取存储器将增强 FeFET 结构,以实现片上学习和动态可重构性。与底层硬件同步,定制的持续学习算法将与模数转换器和 FeFET 阵列共同设计,赋予系统节能的弹性和适应性。使用所提出的方法设计的微电子系统可以看到广泛的应用,从脑机接口和植入系统到无线系统的盲波形分类。为了验证该方法,将制造并测量集成电路。这些还将为进一步完善和校准用于性能评估和设计空间探索的软件模型提供数据。该项目最终将开发对受生物启发的、节能的、自主代理至关重要的组件。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Siddharth Joshi其他文献

Growth of Horizontal Nanopillars of CuO on NiO/ITO Surfaces
NiO/ITO 表面 CuO 水平纳米柱的生长
  • DOI:
    10.1155/2014/635308
  • 发表时间:
    2014-08-28
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Siddharth Joshi;Mrunmaya Mudigere;L. Krishnamurthy;G. L. Shekar
  • 通讯作者:
    G. L. Shekar
65k-neuron integrate-and-fire array transceiver with address-event reconfigurable synaptic routing
具有地址事件可重构突触路由的 65k 神经元集成发射阵列收发器
Fostering inclusive growth through e-Governance Embedded Rural Telecenters (EGERT) in India
通过印度电子政务嵌入式农村电信中心 (EGERT) 促进包容性增长
  • DOI:
    10.1016/j.giq.2011.08.009
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Naik;Siddharth Joshi;K. Basavaraj
  • 通讯作者:
    K. Basavaraj
Role of adsorbed water in inducing electron accumulation in InN
吸附水在 InN 中诱导电子积累的作用
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qi Wang;Siddharth Joshi;Nicholas Smieszek;V. Chakrapani
  • 通讯作者:
    V. Chakrapani
Facile Synthesis of Large Area Two-Dimensional Layers of Transition-Metal Nitride and Their Use as Insertion Electrodes
大面积二维过渡金属氮化物层的简便合成及其作为插入电极的用途
  • DOI:
    10.1021/acsenergylett.7b00240
  • 发表时间:
    2017-05-05
  • 期刊:
  • 影响因子:
    22
  • 作者:
    Siddharth Joshi;Qi Wang;A. Puntambekar;V. Chakrapani
  • 通讯作者:
    V. Chakrapani

Siddharth Joshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Siddharth Joshi', 18)}}的其他基金

EAGER: An Analog Hardware System for Solving Boolean Satisfiability
EAGER:用于解决布尔可满足性的模拟硬件系统
  • 批准号:
    1644368
  • 财政年份:
    2016
  • 资助金额:
    $ 59.42万
  • 项目类别:
    Standard Grant

相似国自然基金

面向5G通信的超高频FBAR耗散机理和耗散稳定性研究
  • 批准号:
    12302200
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
  • 批准号:
    82302939
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
宽运行范围超高频逆变系统架构拓扑与调控策略研究
  • 批准号:
    52377175
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
超高频同步整流DC-DC变换器效率优化关键技术研究
  • 批准号:
    62301375
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
超高频光声频谱渐进式调制下的光声显微成像轴向分辨率提升研究
  • 批准号:
    62265011
  • 批准年份:
    2022
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 59.42万
  • 项目类别:
    Standard Grant
CRII: SHF: Systematic Construction of Teaching Language Progressions for Embedded Domain-Specific Languages
CRII:SHF:嵌入式领域特定语言教学语言进程的系统构建
  • 批准号:
    2348408
  • 财政年份:
    2024
  • 资助金额:
    $ 59.42万
  • 项目类别:
    Standard Grant
SHF: Small: Hardware-Software Co-design for Privacy Protection on Deep Learning-based Recommendation Systems
SHF:小型:基于深度学习的推荐系统的隐私保护软硬件协同设计
  • 批准号:
    2334628
  • 财政年份:
    2024
  • 资助金额:
    $ 59.42万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 59.42万
  • 项目类别:
    Standard Grant
SHF: Medium: Provably Correct, Energy-Efficient Edge Computing
SHF:中:可证明正确、节能的边缘计算
  • 批准号:
    2403144
  • 财政年份:
    2024
  • 资助金额:
    $ 59.42万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了