Soft wireless multimodal cardiac implantable devices for long-term investigating heart failure pathogenesis
用于长期研究心力衰竭发病机制的软无线多模式心脏植入装置
基本信息
- 批准号:10735395
- 负责人:
- 金额:$ 58.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAddressAmericanAnesthesia proceduresAnimal ExperimentsAnimal ModelAnimalsBiophysicsCardiacCardiologyCardiovascular PhysiologyCell Culture TechniquesCellsChronicClinicalColorCommunitiesComplexConsciousCoronavirusDevelopmentDevicesDiabetes MellitusDiagnosticDisadvantagedDiseaseElectrophysiology (science)Energy MetabolismEnergy harvestingFlavin-Adenine DinucleotideFunctional disorderFutureGeneticGoalsHeartHeart AbnormalitiesHeart DiseasesHeart ResearchHeart failureHumanImaging technologyImplantIn VitroIndividualInfectionInvestigationLabelLifeLinkMagnetic Resonance SpectroscopyMalignant NeoplasmsMapsMeasurementMeasuresMechanicsMetabolicMetabolic DiseasesMetabolic dysfunctionMicroelectrodesMicrofabricationModalityModelingModificationMorphologic artifactsMotionMyocardialNicotinamide adenine dinucleotideOpticsOutcomes ResearchPathogenesisPhysiologicalProcessPropertyQualifyingQuality of lifeRadioactive TracersRattusResearchResolutionRoleSchemeSignal PathwayStatistical Data InterpretationSurfaceSystemTechniquesTechnologyTestingTherapeuticThoracic cavity structureTimeTissuesWorkbioelectronicsbiophysical propertiescardiac devicecardiac implantcardiac pacingcardiac resynchronization therapycomputerized data processingdata acquisitiondata communicationdensitydesignelectrical propertyexperimental studyfabricationgraphical user interfaceheart functionheart rhythmimplantable devicein vivoinnovationlight emissionmicrosystemsminiaturizemultimodalitynovel strategiesoperationoptical imagingpower harvestingskillstherapeutic developmenttherapy outcometoolwirelesswireless implant
项目摘要
Project Summary
The goal of this R01 proposal is to develop an ultra-soft, fully implantable, wireless label-free cardiac mapping
and modulation system and apply it to identify chronic electrophysiological and metabolic changes and their links
during heart failure (HF) development, progression, and pacing treatment in unrestrained conscious animals at
cellular and whole heart levels. To achieve this, a miniaturized, mechanically compliant platform that integrates
high-density, high-resolution sensing and modulation channels with wireless energy harvesting, storage, control,
and data communication module is proposed. The resulting systems will greatly reduce motion artifacts and
allow bidirectional high-content electrical and metabolic mapping and pacing in live animals. Those devices are
innovative because they directly address the current limitations in chronically quantifying the individual roles and
interplay between vital cardiac biophysical parameters during heart disease pathogenesis and will be used to
fundamentally investigate the complex disease mechanisms involved in pathophysiological conditions leading to
lethal HF and its therapeutic treatment. Once realized, this technology will be highly valuable to the cardiac
research community. In the long term this work will enable closed-loop multiparametric cardiac mapping and
pacing systems and offer new approaches to study the precise mechanisms and optimize the diagnostic and
therapeutic strategies of other life-threatening heart diseases beyond HF. The three specific aims are:
Aim 1 will establish ultra-soft multimodal cardiac systems for label-free cellular-resolution mapping of the
excitation-contraction-metabolic waves and cardiac pacing. The mechanically compliant highly stretchable
systems consist of high-density arrays (~300 channels in total) of (1) transparent microelectrodes for electrical
mapping and stimulation; (2) multicolor micro-light-emitting diodes, and micro-photodetectors to excite and
measure the autofluorescence of major endogenous fluorescent markers of cellular energy metabolism.
Aim 2 will develop fully implantable wireless schemes for power harvesting, storage, control, and data
communication to chronically operate the platforms in Aim 1 within a closed thoracic cavity in freely behaving
small animals, which is beyond any possibility supported by current techniques. Graphical user interfaces will be
developed for device configuration, real-time bidirectional control, data acquisition and processing. The
integrated systems will be characterized, validated, and optimized by iterative benchtop measurements.
Aim 3 will systematically investigate the precise mechanisms of HF pathogenesis and therapy using a battery
of tests in rat models of HF. The functions of the proposed systems will be assessed in both ex vivo and in vivo
studies. The implantable cardiac devices will identify the individual roles and links between local metabolic and
electrical properties during different time points and stages of HF development and progression, and thoroughly
evaluate the effects of cardiac-resynchronization therapy.
项目概要
R01 提案的目标是开发一种超软、完全植入、无线无标签心脏测绘
和调制系统并应用它来识别慢性电生理和代谢变化及其联系
在心力衰竭 (HF) 发展、进展和起搏治疗过程中,对不受约束的清醒动物进行
细胞和整个心脏水平。为了实现这一目标,需要一个小型化、机械兼容的平台,该平台集成了
高密度、高分辨率传感和调制通道,具有无线能量收集、存储、控制、
并提出了数据通信模块。由此产生的系统将大大减少运动伪影和
允许在活体动物中进行双向高内涵电和代谢测绘和起搏。这些设备是
创新是因为它们直接解决了当前长期量化个人角色的局限性,
心脏病发病机制中重要的心脏生物物理参数之间的相互作用,将用于
从根本上研究导致病理生理状况的复杂疾病机制
致命性心力衰竭及其治疗方法。一旦实现,这项技术将对心脏非常有价值
研究社区。从长远来看,这项工作将使闭环多参数心脏测绘成为可能
起搏系统并提供新方法来研究精确机制并优化诊断和
心力衰竭以外的其他危及生命的心脏病的治疗策略。这三个具体目标是:
目标 1 将建立超软多模态心脏系统,用于无标记细胞分辨率绘图
兴奋-收缩-代谢波和心脏起搏。机械顺应性高拉伸性
系统由高密度阵列(总共约 300 个通道)组成,该阵列由 (1) 个透明微电极组成,用于电学
绘图和刺激; (2)多色微型发光二极管和微型光电探测器来激发和
测量细胞能量代谢的主要内源荧光标记的自发荧光。
目标 2 将开发用于能量收集、存储、控制和数据的完全植入式无线方案
沟通以在封闭胸腔内长期自由操作目标 1 中的平台
小动物,这是目前技术无法支持的。图形用户界面将
为设备配置、实时双向控制、数据采集和处理而开发。这
集成系统将通过迭代台式测量进行表征、验证和优化。
目标 3 将系统地研究 HF 发病机制和使用电池的治疗的精确机制
HF 大鼠模型的测试。所提出的系统的功能将在体外和体内进行评估
研究。植入式心脏装置将识别个体的作用以及局部代谢和心脏之间的联系。
HF发展和进展的不同时间点和阶段的电特性,并彻底
评估心脏再同步治疗的效果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luyao Lu其他文献
Luyao Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
- 批准号:
10748859 - 财政年份:2024
- 资助金额:
$ 58.12万 - 项目类别:
Translational genomics in gout: From GWAS signal to mechanism
痛风的转化基因组学:从 GWAS 信号到机制
- 批准号:
10735151 - 财政年份:2023
- 资助金额:
$ 58.12万 - 项目类别:
A novel bioengineering approach to restoring permanent periodontal inflammatory bone loss
一种恢复永久性牙周炎性骨质流失的新型生物工程方法
- 批准号:
10734465 - 财政年份:2023
- 资助金额:
$ 58.12万 - 项目类别:
Prototype development and validation of soft robotic sensor arrays for mapping cardiac arrhythmia
用于绘制心律失常的软机器人传感器阵列的原型开发和验证
- 批准号:
10722857 - 财政年份:2023
- 资助金额:
$ 58.12万 - 项目类别: