Mathematical modelling of diffusion-drift system of double chemotaxis type coupled with fluid
流体耦合双趋化型扩散-漂移系统的数学建模
基本信息
- 批准号:15KT0019
- 负责人:
- 金额:$ 11.65万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2015
- 资助国家:日本
- 起止时间:2015-07-10 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
项目成果
期刊论文数量(29)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Time global existence and finite time blow-up criterion for solutions to the Keller–Segel system coupled with Navier–Stokes fluid
凯勒解的时间全局存在性和有限时间爆炸准则
- DOI:
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Saito;O.,Tatebayashi;K.;Aramaki;T.;Kurisu;K.;Hanaki;K.;and Takeuchi;K.;D. Tamura,S. Aoi,T. Funato,S. Fujiki,K. Senda,K. Tsuchiya;石井秀樹;日高 昇平;杉山由恵
- 通讯作者:杉山由恵
Mathematical Modeling and Analysis of Chemotactic Cell Migration
趋化细胞迁移的数学建模与分析
- DOI:
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:関谷直也;則藤孝志;小山良太;中村陽人;杉山由恵
- 通讯作者:杉山由恵
On H¨older continuity of solutions to fast diffusion equations with external forces and its applications
外力快速扩散方程解的Holder连续性及其应用
- DOI:
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Saito;O.;石井秀樹;伊藤仁一; 中尾温;杉山由恵
- 通讯作者:杉山由恵
Time global existence and finite time blow-up criterion for solutions to the Keller-Segel system coupled with Navier-Stokes fluid
纳维-斯托克斯流体耦合 Keller-Segel 系统解的时间全局存在性和有限时间膨胀准则
- DOI:
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:加藤拓;金野優也;池澤美紀;石井秀樹;江口哲也;若林正吉;大瀬健嗣;大島宏行;前田良之;日高昇平;R. Sakai,T. Funato,S. Fujiki,A. Konosu,S. Aoi,D. Yanagihara;Osamu Saito;瀧澤重志;杉山由恵
- 通讯作者:杉山由恵
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sugiyama Yoshie其他文献
Sugiyama Yoshie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sugiyama Yoshie', 18)}}的其他基金
Development and clinical application of a mathematical model to explain thrombogenic dynamics during the healing process of cerebral aneurysms
解释脑动脉瘤愈合过程中血栓形成动力学的数学模型的建立和临床应用
- 批准号:
18KT0025 - 财政年份:2018
- 资助金额:
$ 11.65万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
On the asymptotics and well-posedness for Keller-Segel system of degenerate and singular type
简并奇异型Keller-Segel系统的渐近性和适定性
- 批准号:
15K04961 - 财政年份:2015
- 资助金额:
$ 11.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Creation of advanced method in mathematical analysis on nonlinear mathematical models of critical type
创建临界型非线性数学模型数学分析的先进方法
- 批准号:
19H05597 - 财政年份:2019
- 资助金额:
$ 11.65万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
二重走化性をもつ流体型移流拡散方程式系の特異性構造の解析
具有双重趋化性的流体型平流扩散方程组的奇点结构分析
- 批准号:
15J04076 - 财政年份:2015
- 资助金额:
$ 11.65万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Correlation research for non-local interaction system and the mass transport conservation law
非局域相互作用系统与质量输运守恒定律的相关研究
- 批准号:
23654059 - 财政年份:2011
- 资助金额:
$ 11.65万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Geometric structure of manifold and the blow-up problem of nonlinear heat equation
流形几何结构与非线性热方程的爆炸问题
- 批准号:
23740128 - 财政年份:2011
- 资助金额:
$ 11.65万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
非局所相互作用系と完全可積分構造の関連の探索
探索非局域交互系统与完全可积结构之间的关系
- 批准号:
19654028 - 财政年份:2007
- 资助金额:
$ 11.65万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research