非局所相互作用系と完全可積分構造の関連の探索

探索非局域交互系统与完全可积结构之间的关系

基本信息

  • 批准号:
    19654028
  • 负责人:
  • 金额:
    $ 2.05万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
  • 财政年份:
    2007
  • 资助国家:
    日本
  • 起止时间:
    2007 至 2009
  • 项目状态:
    已结题

项目摘要

研究実績は以下のとおり。1.研究代表者の小川は、連携研究者の石渡通徳(室蘭工大・工)、研究協力者の高橋太(阪市立大・理)、黒木場正城(福岡大・理)らとともに2次元上で楕円型部分が非線形に摂動されたKeller-Segel系の時間適切性について研究し、初期値が十分小さく解に一定の変分法的特性を満たす場合には解が一意的に存在すること、またそれ以外の場合には一般に解の一意性が崩れ、適切性が成立しないことを変分的手法により示した。特に初期値問題が非適切であって少なくとも球対称の初期値からは少なくとも解が2つ存在することを示した。方法はヒルベルト-シュミット法と楕円型方程式の臨界点解からの分岐解をとらえることにより示される。2.研究代表者の小川は研究協力者の清水扇丈(静岡大・理)と共同で2次元Drift-diffusion方程式を臨界Besov空間で考え、局所解の存在定理と時間大域的可解性を示した。その際に非回帰的Banach空間における最大正則性定理を証明し、L^1に近い空間における擬似的なエネルギー不等式が成り立つこと、またL^1空間では同様の不等式が一般には成立しないことを示した。3.研究代表者の小川は研究協力者の山本征法(東北大大学院博士3年)と共同で、高次元drift-diffusion方程式の解の減衰について研究し、時間大域解の解の漸近挙動を高次の項まで展開した。特にこの問題に固有のキャンセル効果により高次漸近展開項がより簡潔に表せることと、高次の展開項が一般には消えないことを示し、高次項の誤差項に対する下からの減衰評価を与えた。
The research results are as follows: 1. The principal investigator, Ogawa, together with his collaborative researchers Ishiwata Michinori (Muroran Institute of Technology), researchers Takahashi Tai (Osaka Muroran Institute of Technology), and researchers Masaki Kurokiba (Fukuoka University of Science), and others, studied the temporal appropriateness of the Keller-Segel system in which椭圆形部分在二维中非线性地扰动,并使用一种变异方法证明,如果初始值足够小,并且在溶液中满足了某些变异性能,则该溶液的独特存在,而在其他情况下,溶液的独特性通常会瓦解,并且该溶液的独特性不足。特别是,初始值问题是不合适的,并且从球形对称的初始值中至少存在两个解决方案。该方法是通过从希尔伯特 - 奇数方法的临界点解和椭圆方程的临界点解捕获分支溶液来显示的。 2。奥古瓦(Ogawa)的首席研究员与他的研究合作伙伴Shimizu Ogi Takeshi(Shizuoka University,Science,Science)合作考虑了关键BESOV空间中的二维漂移扩散方程,并证明了本地解决方案的存在定理和全球时间溶解度。在这种情况下,我们证明了非回归BANACH空间中的最大规律定理,表明伪能不等式在接近L^1的空间中存在,并且类似的不等式在L^1空间中通常不存在。 3。奥古瓦(Ogawa)的首席研究员与他的研究合作伙伴山本托·塞霍(Toohoku University)合作研究了对高维漂移扩散方程的解决方案的衰减,并开发了解决方案对全球时间解决方案的渐近性行为,以实现高级期限。特别是,此问题固有的取消效应允许对高阶渐近扩展项的更简化表示,并且高阶扩展项通常不会消失,从而对高阶项的误差项进行了较低的衰减评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Asymptotic bahavior of solutions to drift-diffution system with generalized dissipation
广义耗散漂移扩散系统解的渐近行为
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    松永;大久保;仙石;仁木;T.Ogawa;相馬充・谷川清隆;福田善之;T.Ogawa
  • 通讯作者:
    T.Ogawa
Non-existence of weak solutions to nonlinear damped wave equations in exterior domains
Multiple global existence of solutions for nonlinearly perturbed elliptic parabolic system in R^2
R^2 中非线性扰动椭圆抛物型系统解的多重全局存在性
Drift-diffusion system in 2 dimensional critical space
二维临界空间中的漂移扩散系统
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    相馬充;谷川清隆;T. Ogawa;M. Kurokiba and T. Ogawa,;T.Ogawa;T. Ogawa
  • 通讯作者:
    T. Ogawa
Asymptotic Analysis and Singularity 1, 2, Advanced Study of Pure Mathemat-ics, 47
渐近分析和奇异性 1, 2,纯数学高级研究,47
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Tsutsumi;E. Yanagida;H. Kozono;K. Tanaka;T. Ogawa (eds)
  • 通讯作者:
    T. Ogawa (eds)
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

小川 卓克其他文献

2次元臨界 Hardy 空間における drift・diffusion 方程式の可解性
二维临界 Hardy 空间中漂移/扩散方程的可解性
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    劉永琴;川島秀一;川島秀一;川島秀一;川島秀一;S.Kawashima;S.Kagei;隠居良行;隠居 良行;西畑 伸也;小川 卓克
  • 通讯作者:
    小川 卓克
発展方程式に対する Brezis-Merle の不等式と応用
Brezis-Merle 不等式及演化方程的应用
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    上田好寛;中村徹;川島秀一;S. Kawashima;川島秀一;S. Kawashima;Y. Kagei;Y. Kagei;S.Kawashima;川島 秀一;T.Ogawa;小川 卓克;小川 卓克
  • 通讯作者:
    小川 卓克
Convergence rate of solutions toward stationary solutions to the compressible Navier-Stokes equation in multi-dimensional half space
多维半空间中可压缩纳维-斯托克斯方程的稳态解的收敛率
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    上田好寛;中村徹;川島秀一;S. Kawashima;川島秀一;S. Kawashima;Y. Kagei;Y. Kagei;S.Kawashima;川島 秀一;T.Ogawa;小川 卓克;小川 卓克;T.Kobayashi;S.Nishibata;Y.Kagei;T.Kobayashi;小川 卓克;S.Nishibata;小川 卓克;Y.Kagei;T.Kobayashi;S.Nishibata
  • 通讯作者:
    S.Nishibata
Fluid mechanial approximation to the degenerated drift-diffusion system from compressible Navier-Stokes-Poisson system
可压缩纳维-斯托克斯-泊松系统退化漂移扩散系统的流体力学近似
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    上田好寛;中村徹;川島秀一;S. Kawashima;川島秀一;S. Kawashima;Y. Kagei;Y. Kagei;S.Kawashima;川島 秀一;T.Ogawa;小川 卓克;小川 卓克;T.Kobayashi;S.Nishibata;Y.Kagei;T.Kobayashi;小川 卓克;S.Nishibata;小川 卓克;Y.Kagei;T.Kobayashi
  • 通讯作者:
    T.Kobayashi
Hardy type inequality and application
Hardy型不等式及其应用
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    上田好寛;中村徹;川島秀一;S. Kawashima;川島秀一;S. Kawashima;Y. Kagei;Y. Kagei;S.Kawashima;川島 秀一;T.Ogawa;小川 卓克;小川 卓克;T.Kobayashi;S.Nishibata;Y.Kagei;T.Kobayashi;小川 卓克;S.Nishibata;小川 卓克;Y.Kagei;T.Kobayashi;S.Nishibata;川島秀一;川島秀一
  • 通讯作者:
    川島秀一

小川 卓克的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('小川 卓克', 18)}}的其他基金

Invention and explorer for undiscovered structure and principle in the mathematical analysis for the relation between fluid dynamics and combustion.
流体动力学与燃烧关系数学分析中未被发现的结构和原理的发明和探索。
  • 批准号:
    20K20284
  • 财政年份:
    2020
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Unravel higher order critical structures to solutions of nonlinear dispersive and dissipative partial differential equations
解开非线性色散和耗散偏微分方程解的高阶临界结构
  • 批准号:
    19H00638
  • 财政年份:
    2019
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Creation of advanced method in mathematical analysis on nonlinear mathematical models of critical type
创建临界型非线性数学模型数学分析的先进方法
  • 批准号:
    19H05597
  • 财政年份:
    2019
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
非線形発展方程式の未踏臨界構造の解明
阐明非线性演化方程的未探索临界结构
  • 批准号:
    25247009
  • 财政年份:
    2013
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
画像処理の数理における実解析的手法の探索
寻找图像处理数学中真正的分析方法
  • 批准号:
    15654023
  • 财政年份:
    2003
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
粘性流体と分散型非線形方程式研究に関する日韓国際共同研究
日韩国际粘性流体联合研究及分布非线性方程研究
  • 批准号:
    13894006
  • 财政年份:
    2001
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
非線形数値解析における粘性解の方法
非线性数值分析中的粘性求解方法
  • 批准号:
    11874024
  • 财政年份:
    1999
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
非線型発展方程式の解の挙動および関連する非線型楕円型方程式の解の構造の研究
研究非线性演化方程解的行为以及相关非线性椭圆方程解的结构
  • 批准号:
    04740071
  • 财政年份:
    1992
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

革新的CO2分解技術の実現に向けた超臨界CO2中プラズマの電子密度診断技術の創出
创建超临界二氧化碳等离子体电子密度诊断技术,实现创新的二氧化碳分解技术
  • 批准号:
    23K26097
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
自動加工制御とイオン照射を活用した鉄系超伝導体丸型線材の臨界電流密度向上
利用自动加工控制和离子辐照提高铁基超导圆线的临界电流密度
  • 批准号:
    24K17605
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
FF‐MOD法による人工ピン導入型HEA‐RE123線材の磁場中高臨界電流密度化
FF-MOD法人工引入HEA-RE123导线磁场中的高临界电流密度
  • 批准号:
    24KJ1858
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Influence of quantum critical point on depairing current density and critical current density
量子临界点对配对电流密度和临界电流密度的影响
  • 批准号:
    23KK0073
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Creation of electron density diagnostic technique for plasma in supercritical CO2 for innovative CO2 decomposition technology
创建超临界二氧化碳等离子体电子密度诊断技术,用于创新二氧化碳分解技术
  • 批准号:
    23H01402
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了