Painleve equations and integrable systems
Painleve 方程和可积系统
基本信息
- 批准号:11440047
- 负责人:
- 金额:$ 7.87万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Noumi and Yamada gave a systematic generalization of Painleve-type differential equations from the point of view of affine Weyl group symmetry. This result is presented in the Noumi's book and activate the research of this area. A new Lax formalism for the sixth Painleve equation is also obtained. The universal structure with respect to the root systems was discovered on the birational representation of the affine Weyl group arising from Painleve equations. Lie theoretic background is also explained based on the gauss decomposition. The representation was lifted to the tau-functions. The tau functions are certain matrix elements of affine Lie algebras. This construction proved that the representation gives the symmetry of the Painleve type equations arising as the similarity reduction of the Drinfeld-Sokolov hierarchy. On the other hand, Kajiwara, Noumi, Yamada studied the q-Painleve IV equation and its generalization with Weyl group symmetry of type W (A^<(1)>_<m-1> × A^<(1)>_<n-1>). This representation is "tropical" (=subtraction free) and has some combinatorial applications through the ultra-discretization. q-KP hierarchy and their polynomial solutions are obtained. Masuda gave the determinant formulas for the (q-)Painleve V and VI equations. Takano constructed the space of initial value based on the Backlund transformations. Saito gave the algebro-geometric characterization of the space of initial value. In summary, we obtained sufficient results for almost all the problems of the project.
诺米(Noumi)和山田(Yamada)从仿射Weyl群对称的角度进行了系统的泛型型微分方程的系统概括。该结果在Noumi的书中提出,并激活该领域的研究。还获得了第六次帕克斯方程的新的宽松格式。关于根系的普遍结构是在阵亡系统的十亿个代表性上发现的。还根据高斯分解来解释谎言理论背景。表示表示为tau功能。 tau函数是仿射为代数的某些矩阵元素。这种构造规定,该表示形式给出了疼痛型方程的对称性,作为Drinfeld-Sokolov层次结构的相似性降低。另一方面,Yamada的Kajiwara,Noumi,Noumi研究了Q-Painleve IV方程及其用Weyl oft type W(a^<(1)> _ <m-1>×A^<(1)> _ <n-1>)的Weyl组对称性的概括。该表示形式是“热带”(=免除),并且通过超散制具有一些组合应用。获得Q-KP层次结构及其多项式溶液。 Masuda给出了(Q-)Painleve V和VI方程的确定公式。 Takano基于反向插件变换构建了初始值的空间。斋藤给出了初始值空间的代数几何表征。总之,我们几乎为项目的所有问题获得了足够的结果。
项目成果
期刊论文数量(165)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A.Kuniba, et al.: "Difference L operators related to q-characters"Journal of Phys. A.. (印刷中). (2002)
A.Kuniba 等人:“与 q 字符相关的差分 L 运算符”Journal of Phys A.(出版中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Masuda: "A determinant formula for a class of rational solutions of painleve V equation"Nagoya Math. J.. 168. 1-25 (2002)
T.Masuda:“Painleve V 方程一类有理解的行列式”名古屋数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kajiwara,Kenji: "On the Umemura polynomials for the Painlevi III equation"Phys.Lett.. A260. 462-467 (1999)
Kajiwara,Kenji:“关于 Painlevi III 方程的 Umemura 多项式”Phys.Lett.. A260。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
野海正俊: "パンルヴェ方程式-対称性からの入門-"朝倉書店. 201 (2000)
Masatoshi Noumi:“Painlevé 方程 - 对称性简介 -”朝仓书店 201 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.-H.Saito et al.: "Deformation of Okamoto-Painleve Pairs and Painleve equations"J.of Algebraic Geometry. 11. 311-362 (2002)
M.-H.Saito 等人:“Okamoto-Painleve 对和 Painleve 方程的变形”J.of Algebraic Geometry。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YAMADA Yasuhiko其他文献
YAMADA Yasuhiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YAMADA Yasuhiko', 18)}}的其他基金
Creation of Teacher-training Curriculum whose Core is Dialogic Scenarios and Development of its Evaluation Methods
以对话情景为核心的教师培训课程的创建及评价方法的开发
- 批准号:
19K02812 - 财政年份:2019
- 资助金额:
$ 7.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on Development of Dialogic Scenarios in Problem-based Learning
基于问题的学习中对话情景的开发研究
- 批准号:
24531196 - 财政年份:2012
- 资助金额:
$ 7.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of individualized dosage regimen based on pharmacodynamic model considering efficacy expression process of biological agents for rheumatoid arthritis
考虑类风湿关节炎生物制剂药效表达过程的药效模型个体化给药方案的建立
- 批准号:
21590181 - 财政年份:2009
- 资助金额:
$ 7.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric methods in discrete integrablesystems
离散可积系统中的几何方法
- 批准号:
21340036 - 财政年份:2009
- 资助金额:
$ 7.87万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Box-ball systems and combinatorial Bethe ansatz
盒球系统和组合 Bethe ansatz
- 批准号:
17340047 - 财政年份:2005
- 资助金额:
$ 7.87万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Differential equations for periods and super string and susy gauge theories
周期微分方程以及超弦和 Susy 规范理论
- 批准号:
09440021 - 财政年份:1997
- 资助金额:
$ 7.87万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似国自然基金
动态可重构系统高级合成的集成化设计技术研究
- 批准号:60266003
- 批准年份:2002
- 资助金额:7.0 万元
- 项目类别:地区科学基金项目
相似海外基金
PRIMES: Matroids, Polyhedral Geometry, and Integrable Systems
PRIMES:拟阵、多面体几何和可积系统
- 批准号:
2332342 - 财政年份:2024
- 资助金额:
$ 7.87万 - 项目类别:
Standard Grant
Well-posedness and Long-time Behavior of Dispersive Integrable Systems
色散可积系统的适定性和长期行为
- 批准号:
2348018 - 财政年份:2024
- 资助金额:
$ 7.87万 - 项目类别:
Continuing Grant
Algebraic Geometry of Hitchin Integrable Systems and Beyond
希钦可积系统及其他代数几何
- 批准号:
2301474 - 财政年份:2023
- 资助金额:
$ 7.87万 - 项目类别:
Continuing Grant
Differential geometry and integrable systems: exploiting new links
微分几何和可积系统:利用新的联系
- 批准号:
23H00083 - 财政年份:2023
- 资助金额:
$ 7.87万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Discrete differential geometry, Lie sphere geometry, discrete surfaces theory, surface representations
离散微分几何、李球几何、离散曲面理论、曲面表示
- 批准号:
22KF0255 - 财政年份:2023
- 资助金额:
$ 7.87万 - 项目类别:
Grant-in-Aid for JSPS Fellows