Research on log canonical divisors on higher dimensional algebraic varieties
高维代数簇的对数正则因数研究
基本信息
- 批准号:11440002
- 负责人:
- 金额:$ 5.25万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Let X be a normal complete algebraic variety and L an invertible sheaf on it . I considered the following effective non-vanishing conjecture : "Assume that there exists an R-divisor B on X such that the pair (X, B) is KIT, L is nef. and L - (K_X +B) is nef and big. Then there exists a non-zero holomorphic global sections of L". I proved it in the case where the numerical Kodaira dimension of L is at most 2, or X is a minimal 3-fold or a Fano 4-fold. In the course of the proof, I obtained a logarithmic version of the semipositivity theorem for algebraic fiber spaces. Combining with the adjunction theorem which I proved earlier, one can apply the result for the existence problem of ladders on Fano varieties.I considered the following relative version of the Fujita freeness conjecture which may lead to the solution of Fujita's original conjecture in arbitrary dimension : "Let f be a surjective morphism from a smooth projective variety Y to an other smooth projective variety X such that f … More is smooth over the complement of a normal crossing divisor on X, and L an ample line bundle on X. Let F be the direct image sheaf of the canonical sheaf of Y by f. Then the tensor product of F and the m-th power of L is generated by global sections if m is at least n+1." The result obtained states that the relative conjecture is reduced to the conjecture on the local existence of certain log canonical divisor, and thus the relative conjecture is confirmed when n is at most 4. In order to prove the result, I extended the Q-divisorial version of the vanishing theorem for the direct image sheaf F in terms of the parabolic structure on F, where the parabolic structure is defined using the filtration of the Hodge bundle determined by the monodromy of the variation of Hodge structures.I considered a new approach toward the existence problem of the flip from the view point of the theory of bounded derived categories of coherent sheaves on algebraic varieties. As a preparation, I proved that the existence problem of the flip is reduced to the existence problem of the flop. Then I showed by example that for varieties with quotient singularities, the usual bounded derived categories of coherent sheaves are not necessarily invariant under the flops. Then I showed that if we consider orbifold sheaves instead of usual sheaves, everything works well in some special cases. Less
令X为正常的完整代数品种,并在其上进行可逆捆。我考虑了以下有效的非变化概念:“假设x上存在一个R-divisor b,使得(x,b)为套件,l是nef。,l-(k_x +b)是nef and big。然后存在非零的holomorphic holomorphic lomorphic lomorphic lomorphic lomorphic lomerphic los l''。我证明了这是在L的数值Kodaira尺寸最多为2的情况下,或者X是最小的3倍或Fano 4倍。在证明过程中,我获得了代数纤维空间的半积极性理论的对数版本。结合我之前证明的调整理论的结合,可以将结果应用于fano品种上的存在问题。我考虑了以下相对版本,这可能会导致福吉塔在任意维度中的原始概念的解决方案,从而使f从平稳的变种中脱落到平稳的变化中……在X上,在X上有足够的线束。让F为Y的直接图像捆,然后F。获得的结果指出,相对猜想被简化为对某些对数规范除数的本地存在的猜想,因此,当n最多4最多4时,确认了相对缔合。霍奇结构变化的单构型。我从代数品种上相干滑轮的有限派生类别的观点的角度考虑了一种新的方法。作为准备工作,我规定,翻转的存在问题减少到了失败的存在问题。然后,我以举例说明,对于引号奇异性的变化,相干滑轮的通常有限的派生类别不一定在拖鞋下不变。然后,我表明,如果我们考虑Orbifold滑轮而不是通常的束带,那么在某些特殊情况下,一切都很好。较少的
项目成果
期刊论文数量(33)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
川又雄二郎: "On algebraic fiber spaces"Asian. J. Math.. (印刷中).
Yujiro Kawamata:“论代数纤维空间”亚洲 J. Math..(出版中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yujiro Kawamata: "On the extension problem of pluricanonical forms"Contemporary Math.. 241. 193-207 (1999)
Yujiro Kawamata:“论多形式的可拓问题”当代数学.. 241. 193-207 (1999)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yujiro Kawamata: "On effective non-vanishing and base-point-freeness"Asian J. Math.. 4. 173-182 (2000)
Yujiro Kawamata:“论有效的不消失和无基点”Asian J. Math.. 4. 173-182 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
川又雄二郎: "Index 1 covers of log terminal surface singularities"J.Alg.Geom.. 8. 519-527 (1999)
Yujiro Kawamata:“索引 1 涵盖了原木终端表面奇点”J.Alg.Geom.. 8. 519-527 (1999)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KAWAMATA Yujiro其他文献
KAWAMATA Yujiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KAWAMATA Yujiro', 18)}}的其他基金
Research on canonical divisors of higher dimensional algebraic varietie
高维代数簇的正则因数研究
- 批准号:
17204001 - 财政年份:2005
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Studies on Hodge Theory and Hypergeometric Functions
霍奇理论与超几何函数研究
- 批准号:
09640010 - 财政年份:1997
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of higher dinendional algebraic varaieties
更高维代数簇的研究
- 批准号:
07454004 - 财政年份:1995
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Number theory of algebraic varieties
代数簇数论
- 批准号:
03452003 - 财政年份:1991
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
Comparative Study of Various Fundamental Groups and Their Structure in Arithmetic and Topology
算术和拓扑中各种基本群及其结构的比较研究
- 批准号:
01460002 - 财政年份:1989
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
相似海外基金
Characterization of multivariate sigma-functions in terms of a system of partial differential equations obtained by Gauss-Manin connection
用通过高斯-马宁连接获得的偏微分方程组表征多元 sigma 函数
- 批准号:
23K03157 - 财政年份:2023
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on value distribution properties of meromorphic functions generated by a wide variety of series and an investigation into their possible algebraic analogues
对各种级数生成的亚纯函数的值分布特性的研究及其可能的代数类似物的研究
- 批准号:
22K03335 - 财政年份:2022
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Homotopy theory related to toric varieties and its related geomety
与环面簇相关的同伦理论及其相关几何
- 批准号:
22K03283 - 财政年份:2022
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on singularities on an algebraic variety
代数簇的奇点研究
- 批准号:
16K05089 - 财政年份:2016
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Comprehensive research of Galois embedding of algebraic variety
代数簇的伽罗瓦嵌入综合研究
- 批准号:
15K04813 - 财政年份:2015
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)