Research on log canonical divisors on higher dimensional algebraic varieties

高维代数簇的对数正则因数研究

基本信息

  • 批准号:
    11440002
  • 负责人:
  • 金额:
    $ 5.25万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    1999
  • 资助国家:
    日本
  • 起止时间:
    1999 至 2001
  • 项目状态:
    已结题

项目摘要

Let X be a normal complete algebraic variety and L an invertible sheaf on it . I considered the following effective non-vanishing conjecture : "Assume that there exists an R-divisor B on X such that the pair (X, B) is KIT, L is nef. and L - (K_X +B) is nef and big. Then there exists a non-zero holomorphic global sections of L". I proved it in the case where the numerical Kodaira dimension of L is at most 2, or X is a minimal 3-fold or a Fano 4-fold. In the course of the proof, I obtained a logarithmic version of the semipositivity theorem for algebraic fiber spaces. Combining with the adjunction theorem which I proved earlier, one can apply the result for the existence problem of ladders on Fano varieties.I considered the following relative version of the Fujita freeness conjecture which may lead to the solution of Fujita's original conjecture in arbitrary dimension : "Let f be a surjective morphism from a smooth projective variety Y to an other smooth projective variety X such that f … More is smooth over the complement of a normal crossing divisor on X, and L an ample line bundle on X. Let F be the direct image sheaf of the canonical sheaf of Y by f. Then the tensor product of F and the m-th power of L is generated by global sections if m is at least n+1." The result obtained states that the relative conjecture is reduced to the conjecture on the local existence of certain log canonical divisor, and thus the relative conjecture is confirmed when n is at most 4. In order to prove the result, I extended the Q-divisorial version of the vanishing theorem for the direct image sheaf F in terms of the parabolic structure on F, where the parabolic structure is defined using the filtration of the Hodge bundle determined by the monodromy of the variation of Hodge structures.I considered a new approach toward the existence problem of the flip from the view point of the theory of bounded derived categories of coherent sheaves on algebraic varieties. As a preparation, I proved that the existence problem of the flip is reduced to the existence problem of the flop. Then I showed by example that for varieties with quotient singularities, the usual bounded derived categories of coherent sheaves are not necessarily invariant under the flops. Then I showed that if we consider orbifold sheaves instead of usual sheaves, everything works well in some special cases. Less
设 X 为正规完备​​代数簇,L 为其可逆束,我考虑了以下有效的非零猜想:“假设 X 上存在 R 约数 B,使得 (X, B) 为 KIT, L 是 nef 且 L - (K_X +B) 是 nef 且很大。则存在 L 的非零全纯全局部分。我在数值 Kodaira 维数的情况下证明了这一点。 L 至多为 2,或 X 为最小 3 倍或 Fano 4 倍 在证明过程中,我结合我的附加定理得到了代数纤维空间的半正定理的对数版本。前面证明了,我们可以将结果应用于Fano品种的梯子存在问题。我考虑了藤田自由度猜想的以下相对版本,它可能导致藤田原始猜想的解决方案任意维猜想:“设 f 是从一个平滑射影簇 Y 到另一个平滑射影簇 X 的满射态射,使得 f … 更多在 X 上的正常交叉除数的补集上是平滑的,并且 L 是一个充足的线束X. 设 F 为 Y 的规范束的直像束,如果 m 至少为 n+1,则 F 与 L 的 m 次方的张量乘积由全局截面生成。” 得到的结果。指出相对猜想被简化为关于某个对数正则除数局部存在的猜想,因此当n至多4时相对猜想得到证实。为了证明这个结果,我扩展了消失定理的Q除数版本对于直接图像层 F 而言,F 上的抛物线结构,其中抛物线结构是使用霍奇丛的过滤来定义的,该霍奇丛由霍奇结构变分的单向性确定。从代数簇相干滑轮有界派生范畴理论的角度考虑了翻转的存在性问题的一种新方法。作为准备,我证明了翻转的存在性问题被简化为翻转的存在性问题。然后我通过例子证明,对于具有商奇点的簇,相干滑轮的通常有界派生类别在翻牌下不一定是不变的。然后我表明,如果我们考虑轨道滑轮而不是通常的滑轮,那么在某些情况下一切都会很好。特殊情况较少

项目成果

期刊论文数量(33)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
川又雄二郎: "On algebraic fiber spaces"Asian. J. Math.. (印刷中).
Yujiro Kawamata:“论代数纤维空间”亚洲 J. Math..(出版中)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yujiro Kawamata: "On the extension problem of pluricanonical forms"Contemporary Math.. 241. 193-207 (1999)
Yujiro Kawamata:“论多形式的可拓问题”当代数学.. 241. 193-207 (1999)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
川又雄二郎: "射影食う円の幾何学"朝倉書店. 224 (2001)
川又雄二郎:“吃投影的圆的几何”朝仓书店224(2001)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yujiro Kawamata: "On effective non-vanishing and base-point-freeness"Asian J. Math.. 4. 173-182 (2000)
Yujiro Kawamata:“论有效的不消失和无基点”Asian J. Math.. 4. 173-182 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
川又雄二郎: "Index 1 covers of log terminal surface singularities"J.Alg.Geom.. 8. 519-527 (1999)
Yujiro Kawamata:“索引 1 涵盖了原木终端表面奇点”J.Alg.Geom.. 8. 519-527 (1999)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KAWAMATA Yujiro其他文献

KAWAMATA Yujiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KAWAMATA Yujiro', 18)}}的其他基金

Research on canonical divisors of higher dimensional algebraic varietie
高维代数簇的正则因数研究
  • 批准号:
    17204001
  • 财政年份:
    2005
  • 资助金额:
    $ 5.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Studies on Hodge Theory and Hypergeometric Functions
霍奇理论与超几何函数研究
  • 批准号:
    09640010
  • 财政年份:
    1997
  • 资助金额:
    $ 5.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research of higher dinendional algebraic varaieties
更高维代数簇的研究
  • 批准号:
    07454004
  • 财政年份:
    1995
  • 资助金额:
    $ 5.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Number theory of algebraic varieties
代数簇数论
  • 批准号:
    03452003
  • 财政年份:
    1991
  • 资助金额:
    $ 5.25万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
Comparative Study of Various Fundamental Groups and Their Structure in Arithmetic and Topology
算术和拓扑中各种基本群及其结构的比较研究
  • 批准号:
    01460002
  • 财政年份:
    1989
  • 资助金额:
    $ 5.25万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似国自然基金

代数簇纤维化的不变量与庞加莱问题
  • 批准号:
    12331001
  • 批准年份:
    2023
  • 资助金额:
    193 万元
  • 项目类别:
    重点项目
代数簇上的凯勒里奇流
  • 批准号:
    12301100
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
一般型三维代数簇的精细双有理分类
  • 批准号:
    12201397
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
奇异簇的导子李代数研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
霍奇理论在一般型代数曲面及奇异超凯勒簇研究中的新应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Characterization of multivariate sigma-functions in terms of a system of partial differential equations obtained by Gauss-Manin connection
用通过高斯-马宁连接获得的偏微分方程组表征多元 sigma 函数
  • 批准号:
    23K03157
  • 财政年份:
    2023
  • 资助金额:
    $ 5.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study on value distribution properties of meromorphic functions generated by a wide variety of series and an investigation into their possible algebraic analogues
对各种级数生成的亚纯函数的值分布特性的研究及其可能的代数类似物的研究
  • 批准号:
    22K03335
  • 财政年份:
    2022
  • 资助金额:
    $ 5.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Homotopy theory related to toric varieties and its related geomety
与环面簇相关的同伦理论及其相关几何
  • 批准号:
    22K03283
  • 财政年份:
    2022
  • 资助金额:
    $ 5.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on singularities on an algebraic variety
代数簇的奇点研究
  • 批准号:
    16K05089
  • 财政年份:
    2016
  • 资助金额:
    $ 5.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Comprehensive research of Galois embedding of algebraic variety
代数簇的伽罗瓦嵌入综合研究
  • 批准号:
    15K04813
  • 财政年份:
    2015
  • 资助金额:
    $ 5.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了