Comparative Study of Various Fundamental Groups and Their Structure in Arithmetic and Topology

算术和拓扑中各种基本群及其结构的比较研究

基本信息

  • 批准号:
    01460002
  • 负责人:
  • 金额:
    $ 4.42万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
  • 财政年份:
    1989
  • 资助国家:
    日本
  • 起止时间:
    1989 至 1990
  • 项目状态:
    已结题

项目摘要

In the case of dimension 3, a minimal model has singular points and each singular point has the the invariant called the index. In spite of disappearance in a non-singular model, it is known that the whole of indices = the basket is a birational invariant and also a deformation invariant. By the way, in the calssification of 3-dimensional varieties, the boundedness of indices for some classes of varieties is needed. I have shown before that the indices are bounded when the canonical divisor k is numerically equivalent to zero. As a continuation of this, I have shown that both indices and K^3 are bounded when K is negative in the paper "Boundedness of Q-Fano threefolds". By the totally different method, I have also shown the boundesness of indices for degenerations of elliptic surfaces in the paper "Moderate degenerations of algebraic surfaces". Moreover, in the same paper, I have shown that the topology of minimal models of degenerations of surfaces are very similar to that of semistable degenerations.If X is an algebraic variety defined over an algebraic number field k, then the fundamental group pi, (X) can be considered as a group extension of the absolute Galois group Gal (k/k). Nakamura studied conditions under which X can be characterized by the group theoretical properties of pi, (X), and obtained several results. Firstly, he showed that when X is a certain hyperbolic curve, pi, (X) as a group extension of Gal (k/k) determines X uniquely up to isomorphisms. He also showed that, when X is P'minus three points, every automorphism of pi, (X) as a group extension must be induced from an automorphim of X itself.Matsumoto studied topological classification of singular fiders in degenerating families of Riemann surfaces ; he proved that topological types of singular fivers are determined by non-adelian monodromy and conversely that, for any monodromy of algebraically finite type, there exists a degenerating family of Riemann surfaces which realizes the monodromy.
在尺寸3的情况下,最小模型具有奇异的点,每个单数点具有不变的索引。尽管在非单明模型中消失了,但众所周知,整个索引=篮子是birational不变的,也是变形不变的。顺便说一句,在三维品种的CALSSIFIENS中,需要某些类别的索引的界限。我之前已经表明,当规范除数k在数值上等于零时,索引是界定的。为此,我已经证明,当k在“ q-fano三倍的界限”中k中为负时,索引和k^3都是有限的。通过完全不同的方法,我还显示了椭圆表面退化的指标的界限,“代数表面的中等变性”。此外,在同一篇论文中,我已经表明,表面变性的最小模型的拓扑结构与可半合并的变性非常相似。如果X是代数数字k上定义的代数品种,则可以将基本组PI(x)视为绝对Galois Glopal Galois Galois Gal(K/K)的基本组PI(X)。中村研究了x可以通过pi(x)的组理论特性来表征x的条件,并获得了几个结果。首先,他表明,当x是一定的双曲线曲线时,pi,(x)作为gal(k/k)的组延伸,将x确定为唯一的同构。他还表明,当x是p'minus三分时,必须从x本身的自动晶体中诱导pi的每一个自动形态(x)。他证明了奇异型膜的拓扑类型是由非阿德式单曲率确定的,相反,对于任何代数有限类型的单片,存在一个脱发的riemann表面家族,可以实现单型。

项目成果

期刊论文数量(39)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
松本幸夫,福原真二,坂本幸一: "Casson's invariant of Seifert homology 3-spheres" Mathematische Annalen. (1990)
Yukio Matsumoto、Shinji Fukuhara、Koichi Sakamoto:“Seifert 同调 3 球体的 Casson 不变量”Mathematicische Annalen (1990)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
織田孝幸,寺杣友秀: "Magnus representation of arithmetic braid groups and universal Jacobi sums" 未定. (1990)
Takayuki Oda、Tomohide Teraso:“算术辫群的马格努斯表示和通用雅可比和”TBA(1990)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Itaru Terada,: "Young-diagrammatic methods for the restriction of representations of complex classical Lie groups to reductive subgroups of maximal rank" Advance in Math.,. 79. 104-135 (1990)
Itaru Terada,:“将复杂经典李群的表示限制为最大秩的还原子群的年轻图解方法”数学进展。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yasutaka Ihara,: "Pro-l branced converings of P and higher circular l-units, Part 2" International Journal of Mathematics. 1. 119-148 (1990)
Yasutaka Ihara,:“P 和更高的圆形 l 单位的 Pro-l 支撑转换,第 2 部分”国际数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
川又 雄二郎: "Boundedness of QーFano threefolds" Contemporary Math.
Yujiro Kawamata:“Q-Fano 三重的有界性”当代数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KAWAMATA Yujiro其他文献

KAWAMATA Yujiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KAWAMATA Yujiro', 18)}}的其他基金

Research on canonical divisors of higher dimensional algebraic varietie
高维代数簇的正则因数研究
  • 批准号:
    17204001
  • 财政年份:
    2005
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Research on log canonical divisors on higher dimensional algebraic varieties
高维代数簇的对数正则因数研究
  • 批准号:
    11440002
  • 财政年份:
    1999
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Studies on Hodge Theory and Hypergeometric Functions
霍奇理论与超几何函数研究
  • 批准号:
    09640010
  • 财政年份:
    1997
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research of higher dinendional algebraic varaieties
更高维代数簇的研究
  • 批准号:
    07454004
  • 财政年份:
    1995
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Number theory of algebraic varieties
代数簇数论
  • 批准号:
    03452003
  • 财政年份:
    1991
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似海外基金

Monodromy in Topology and Geometric Group Theory
拓扑学和几何群论中的单向性
  • 批准号:
    2153879
  • 财政年份:
    2021
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Standard Grant
Monodromy in Topology and Geometric Group Theory
拓扑学和几何群论中的单向性
  • 批准号:
    2003984
  • 财政年份:
    2020
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Standard Grant
Geometric structures and combinaorial structures of 3-manifolds
三流形的几何结构和组合结构
  • 批准号:
    15H03620
  • 财政年份:
    2015
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Dynamical studyof the parameter space for the complexHenon family
复Henon族参数空间的动力学研究
  • 批准号:
    21740125
  • 财政年份:
    2009
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Identities between Special Functions
特殊函数之间的恒等式
  • 批准号:
    20740075
  • 财政年份:
    2008
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了