Number theory of algebraic varieties

代数簇数论

基本信息

  • 批准号:
    03452003
  • 负责人:
  • 金额:
    $ 3.97万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
  • 财政年份:
    1991
  • 资助国家:
    日本
  • 起止时间:
    1991 至 1992
  • 项目状态:
    已结题

项目摘要

The purpose of this research was to investigate the number theory of algebraic varieties defined over a ring of algebraic integers. In order to start this investigation, it is important to replace the originalvariety by a more natural model by a birational transformation. If the given variety has relative dimension 1 over the ring of integers, then the classical minimal model theory provides us the canonical model. Kawamata tried to extend the minimal model theory to higher dimensional case, and succeeded in the case in which the relative dimension is 2 and the variety has semistable reduction.In the course of the proof, newly developed theory of algebraic 3-folds over the complex numbers was used. The difficulty in the proof came from the fact that the vanishing theorem of Kodaira type, which was very useful in the case over the complex numbers, is false in positive characteristic.The singular fiber of a variety with semistable reduction is a normal crossing variety. Conversely, Kawam … More ata considered the smoothing of normal crossing variety into a variety with semistable reduction, and developed the theory of logarithmic deformations with Yoshinori Namikawa at Sophia University. In particular, they proved the existence of a smoothing of a degenerate Calabi-Yau variety.The cohomology theory is an important tool in the investigaition of algebraic varieties. Saito investigated the 1 dimensional Galois representations on the determinant of L-adic cohomology groups. In the case of constant coefficients, he obtained the description of the corresponding quadratic extensions. In the case of variable coefficients, he proved that they are described by the algebraic Hecke characters determined by the Jacobi sums.The zeta functions an analytic object which is attached to an algebraic variety over the ring of integers. There are several mysterious conjectures connecting the zeta functions and the number theory of algebraic varieties. Kurokawa investigated multiple zeta funcitons and multiple trigonometric functions, and found formulas of the Gamma factor of the Selberg zeta functions and of the special values of the zeta functions. Less
本研究的目的是研究在代数整数环上定义的代数簇的数论。为了开始这项研究,重要的是通过给定的双有理变换用更自然的模型替换原始簇。品种在整数环上的相对维数为1,那么经典最小模型理论为我们提供了规范模型,川俣尝试将最小模型理论扩展到更高维的情况,并在相对维数为1的情况下取得了成功。 2且簇具有半稳定约简。证明过程中采用了新发展的复数代数三倍理论,证明的难点在于小平型消失定理。在复数的情况下有用,在正特性中是假的。具有半稳定还原的品种的奇异纤维是离线的正常杂交品种,Kawam … More ata 考虑了将正常杂交品种平滑化为具有半稳定的品种。半稳定约简,并与上智大学的 Yoshinori Namikawa 一起发展了对数变形理论。特别是,他们证明了简并 Calabi-Yau 簇的存在性。上同调理论是研究代数簇的重要工具。研究了常数系数情况下L-进上同调群行列式的一维伽罗瓦表示,得到了相应的描述。在变量系数的情况下,他证明了它们是由雅可比和确定的代数赫克特征描述的。zeta 函数是一个解析对象,它附加在整数环上的代数簇上。连接 zeta 函数和代数簇数论的猜想研究了多重 zeta 函数和多重三角函数,并找到了 Gamma 因子的公式。 Selberg zeta 函数和 zeta 函数的特殊值。

项目成果

期刊论文数量(48)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Kawamata: "On the length of an external rational curve" Invent. Math.105. 609-611 (1991)
Y.Kawamata:“论外部有理曲线的长度”发明。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
川又 雄二郎: "On the length of extremal rational curves" Invent math.105. 609-611 (1991)
Yujiro Kawamata:“论极值有理曲线的长度”发明数学.105(1991)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Kawamata: "Unobstructed deformations - a remark on a paper of Z. Ran" J. Alg. Geom.1. 183-190 (1992)
Y.Kawamata:“无阻碍变形 - Z. Ran 论文中的评论”J. Alg。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
中山 昇: "On smooth exceptional curves in threefolds" J.Fac.Sci.Univ.Tokyo Sec.IA. 37. 511-525 (1990)
Noboru Nakayama:“关于三倍的平滑异常曲线”J.Fac.Sci.Univ.Tokyo Sec.IA 37. 511-525 (1990)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Kawamata: "Log canonical model of a log minimal model" Intl.J.Math.3. 351-357 (1992)
Y.Kawamata:“对数最小模型的对数规范模型”Intl.J.Math.3。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KAWAMATA Yujiro其他文献

KAWAMATA Yujiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KAWAMATA Yujiro', 18)}}的其他基金

Research on canonical divisors of higher dimensional algebraic varietie
高维代数簇的正则因数研究
  • 批准号:
    17204001
  • 财政年份:
    2005
  • 资助金额:
    $ 3.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Research on log canonical divisors on higher dimensional algebraic varieties
高维代数簇的对数正则因数研究
  • 批准号:
    11440002
  • 财政年份:
    1999
  • 资助金额:
    $ 3.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Studies on Hodge Theory and Hypergeometric Functions
霍奇理论与超几何函数研究
  • 批准号:
    09640010
  • 财政年份:
    1997
  • 资助金额:
    $ 3.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research of higher dinendional algebraic varaieties
更高维代数簇的研究
  • 批准号:
    07454004
  • 财政年份:
    1995
  • 资助金额:
    $ 3.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Comparative Study of Various Fundamental Groups and Their Structure in Arithmetic and Topology
算术和拓扑中各种基本群及其结构的比较研究
  • 批准号:
    01460002
  • 财政年份:
    1989
  • 资助金额:
    $ 3.97万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似国自然基金

受限制和集与组合数论
  • 批准号:
    12371004
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
代数K理论、代数数论及其在编码密码中的应用
  • 批准号:
    12371035
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
无穷维多圆柱上函数论和算子理论中的若干问题
  • 批准号:
    12371084
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
复流形的曲率和函数论
  • 批准号:
    12271451
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
一类数论函数的渐近形态估计及应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
  • 批准号:
    EP/Y014030/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.97万
  • 项目类别:
    Research Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
  • 批准号:
    2334874
  • 财政年份:
    2024
  • 资助金额:
    $ 3.97万
  • 项目类别:
    Standard Grant
REU Site: Computational Number Theory
REU 网站:计算数论
  • 批准号:
    2349174
  • 财政年份:
    2024
  • 资助金额:
    $ 3.97万
  • 项目类别:
    Continuing Grant
Analytic Number Theory at the Interface
界面上的解析数论
  • 批准号:
    2401106
  • 财政年份:
    2024
  • 资助金额:
    $ 3.97万
  • 项目类别:
    Continuing Grant
Conference: Solvable Lattice Models, Number Theory and Combinatorics
会议:可解格子模型、数论和组合学
  • 批准号:
    2401464
  • 财政年份:
    2024
  • 资助金额:
    $ 3.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了