REU Site: Computational Number Theory

REU 网站:计算数论

基本信息

  • 批准号:
    2349174
  • 负责人:
  • 金额:
    $ 28.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-11-01 至 2027-10-31
  • 项目状态:
    未结题

项目摘要

Eight students across the country will participate in an eight-week research experience in computational number theory at Clemson University each year of this project. The goal of this program is to help students attain a higher level of independence in mathematical research by having them take part in significant and interesting research projects. Participants will be introduced to various tools, techniques, and problems from number theory and will work on important and often difficult problems that are suitable for undergraduate work. This program will not only provide the participants with the opportunities to broaden their knowledge in their research area but will also give participants the opportunity to become better expositors of their research. This will be accomplished through student lectures during and at the end of the program that will include two presentations in different formats. The PIs will organize an annual REU conference that will enable the students to interact with and learn from students in other REU programs in the region. The conference will provide the students with a valuable opportunity to deliver their first professional talk in a friendly atmosphere and will also help to disseminate the results obtained by the REU students. This project is jointly funded by the Mathematical Sciences Research Experiences for Undergraduates Sites program and the Established Program to Stimulate Competitive Research program.The theory of modular forms plays an important role in modern number theory, such as Andrew Wiles' proof of Fermat's Last Theorem. In this program, various problems in modular forms will be introduced. These problems will offer a blend of computational investigation with the theoretical pursuit of fundamental problems in modular forms or, more generally, in number theory. The problems are specifically chosen so that the participants will be able to begin investigations almost immediately on computational aspects of the projects, giving them an opportunity to spend the entire time at Clemson working on meaningful research. Potential research projects include but are not limited to studying the distribution of zeros of certain modular forms or period polynomials, investigating properties of higher coefficients of Hecke polynomials, and analyzing traces of Hecke operators on certain types of modular forms. Many of these problems are natural extensions or continuations of the results obtained in the previous REUs. More information can be found at the REU website: https://huixue.people.clemson.edu/REU.html.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目每年都会有八名全国各地的学生在克莱姆森大学参加为期八周的计算数论研究。该计划的目标是通过让学生参与重要且有趣的研究项目来帮助他们在数学研究中获得更高水平的独立性。参与者将了解数论中的各种工具、技术和问题,并将解决适合本科工作的重要且通常困难的问题。该计划不仅将为参与者提供扩大其研究领域知识的机会,而且还将为参与者提供成为更好的研究阐释者的机会。这将通过课程期间和课程结束时的学生讲座来完成,其中包括两次不同格式的演讲。 PI 将组织年度 REU 会议,使学生能够与该地区其他 REU 项目的学生互动并向他们学习。此次会议将为学生们提供一个在友好的氛围中进行首次专业演讲的宝贵机会,也将有助于传播 REU 学生所取得的成果。该项目由本科生数学科学研究经验项目和刺激竞争性研究既定项目共同资助。模形式理论在现代数论中发挥着重要作用,例如Andrew Wiles对费马大定理的证明。在本程序中,将以模块化的形式介绍各种问题。这些问题将把计算研究与模形式或更普遍的数论中的基本问题的理论追求结合起来。这些问题是经过专门选择的,以便参与者几乎能够立即开始对项目的计算方面进行调查,使他们有机会在克莱姆森大学进行有意义的研究。潜在的研究项目包括但不限于研究某些模形式或周期多项式的零点分布、研究赫克多项式的较高系数的性质以及分析赫克算子在某些类型的模形式上的踪迹。其中许多问题是先前 REU 中获得的结果的自然延伸或延续。更多信息可在 REU 网站上找到:https://huixue.people.clemson.edu/REU.html。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,被认为值得支持标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hui Xue其他文献

Constructing Precise Coordination of Nickel Active Sites on Hierarchical Porous Carbon Framework for Superior Oxygen Reduction
在分级多孔碳框架上构建镍活性位点的精确配位以实现卓越的氧还原
  • DOI:
    10.1002/smll.202102125
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    13.3
  • 作者:
    Shuai Zhang;Hui Xue;Wan-lu Li;Jing Sun;Niankun Guo;Tianshan Song;Hongliang Dong;Jiangwei Zhang;Xin Ge;Wei Zhang;Qin Wang
  • 通讯作者:
    Qin Wang
Acceptor-Doping Accelerated Charge Separation in Cu2O Photocathode for Photoelectrochemical Water Splitting: Theoretical and Experimental Studies
用于光电化学水分解的 Cu2O 光电阴极受主掺杂加速电荷分离:理论和实验研究
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Mengmeng Zhang;Jiajun Wang;Hui Xue;Jinfeng Zhang;Shengjie Peng;Xiaopeng Han;Yida Deng;Wenbin Hu
  • 通讯作者:
    Wenbin Hu
L1投影的解析计算方法
  • DOI:
    10.13232/j.cnki.jnju.2017.03.012
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xubing Yang;Yifan Gu;Songcan Chen;Hui Xue
  • 通讯作者:
    Hui Xue
Regulating the imbalance of gut microbiota by Smilax china L. polyphenols to alleviate dextran sulfate sodium-induced inflammatory bowel disease
菝葜多酚调节肠道菌群失衡减轻葡聚糖硫酸钠诱导的炎症性肠病
  • DOI:
    10.1142/s0192415x22500215
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Meng Xu;Hui Xue;Gaoxiang Qiao;Mingfu Liao;Li Kong;Qingfeng Zhang;Lezhen Lin;Licong Yang;Guodong Zheng.
  • 通讯作者:
    Guodong Zheng.
Mechanism of fatty acid synthase in drug tolerance related to epithelial-mesenchymal transition of breast cancer.
脂肪酸合酶在乳腺癌上皮间质转化相关药物耐受中的作用机制

Hui Xue的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hui Xue', 18)}}的其他基金

Conference: Southeastern Number Theory Meetings
会议:东南数论会议
  • 批准号:
    2302340
  • 财政年份:
    2023
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant
Southeastern Number Theory Meetings
东南数论会议
  • 批准号:
    1902170
  • 财政年份:
    2019
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant
Number Theory Meetings in the Southeast
东南部的数论会议
  • 批准号:
    1701290
  • 财政年份:
    2017
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant
Southeastern Number Theory Meetings
东南数论会议
  • 批准号:
    1502293
  • 财政年份:
    2015
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant
Southeast Number Theory Meetings
东南数论会议
  • 批准号:
    1303254
  • 财政年份:
    2013
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant
Palmetto Number Theory Series/SouthEast Regional Meeting On Numbers
棕榈数论系列/东南地区数字会议
  • 批准号:
    1101301
  • 财政年份:
    2011
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant
Palmetto Number Theory Series
棕榈数论系列
  • 批准号:
    0901732
  • 财政年份:
    2009
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant

相似国自然基金

硅藻18S rDNA用于溺死地点推断人工智能预测模型的构建及法医学应用研究
  • 批准号:
    82371901
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
具有共形结构的高性能Ta4SiTe4基有机/无机复合柔性热电薄膜
  • 批准号:
    52172255
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
新型WDR5蛋白Win site抑制剂的合理设计、合成及其抗肿瘤活性研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
东北阜新-锦州盆地及其他地点早白垩世晚期的两栖爬行类研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    61 万元
  • 项目类别:
面向多地点动态集结任务的空海无人系统智能协同控制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
  • 批准号:
    2348712
  • 财政年份:
    2024
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant
REU Site: ACRES: Advanced Computational Research Experience for Students
REU 网站:ACRES:学生的高级计算研究体验
  • 批准号:
    2349002
  • 财政年份:
    2024
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant
REU Site: Computational and Data Intensive Astrophysics at the University of Florida
REU 网站:佛罗里达大学的计算和数据密集型天体物理学
  • 批准号:
    2348547
  • 财政年份:
    2024
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant
REU Site: Computational Mathematics for Data Science
REU 网站:数据科学的计算数学
  • 批准号:
    2349534
  • 财政年份:
    2024
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant
REU Site: Computational and Applied Mathematics Program
REU 网站:计算和应用数学项目
  • 批准号:
    2348984
  • 财政年份:
    2024
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了