REU Site: Computational Mathematics for Data Science

REU 网站:数据科学的计算数学

基本信息

  • 批准号:
    2349534
  • 负责人:
  • 金额:
    $ 45.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-05-01 至 2027-04-30
  • 项目状态:
    未结题

项目摘要

The Emory Research Experience for Undergraduates site focuses on computational mathematics and its applications in data science. Data science is of fundamental and strategic importance to the US and impacts nearly every field of science. However, the number of academic training opportunities and skilled workers has not kept pace with the rapid growth in demand from private and public entities. This REU site emphasizes developing research and professional skills to increase students’ ability to understand, conduct, and effectively communicate data science and computational mathematics research. The three-year program will train twelve undergraduates for eight weeks each summer. Faculty members from Emory's Departments of Mathematics and Computer Science Departments will supervise and mentor the students. The site's activities seek to motivate undergraduate students to pursue a graduate degree in this area and equip them with the mathematical and computational skills required to launch careers in academia and industry. Student recruitment will be nationwide, focusing strongly on underrepresented groups and students enrolled in colleges with limited research opportunities. The REU site will introduce undergraduate students to the mathematical theory of computational and machine learning tools and help them tackle open problems in mathematics and related areas. Mathematical breakthroughs in theory, models, and computational methods are needed to extract knowledge from increasingly large and complex data sets and harvest the potential of artificial intelligence to lead to new solutions and discoveries. This REU site will enable teams of undergraduate students to contribute at the interface between computational mathematics and data science. This REU site's annual research themes are broad and consist of learning in imaging science (2024), combining models with data (2025), and discovering new mathematics with computational and machine learning methods (2026). Students will be introduced to various mathematical techniques, including machine learning, deep neural networks, numerical and symbolic computing, optimization, differential equations, and formal mathematics. The projects are designed to promote learning and create new insights of relevance to the scientific community. These insights will be developed and disseminated in student-authored publications, open-source software, and online blogs. The weekly seminar will also provide their mentees with professional mentorship and research skills, including scientific writing, oral and poster presentations, and cloud computing. More information about the site can be found at http://www.math.emory.edu/site/cmds-reuret/.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本科生网站的Emory研究经验着重于计算数学及其在数据科学中的应用。数据科学对美国具有基本和战略性的重要性,几乎影响了科学的每个领域。但是,学术培训机会和熟练工人的数量并没有跟上私人和公共实体需求的迅速增长。 REU网站强调开发研究和专业技能,以提高学生理解,进行和有效地传达数据科学和计算数学研究的能力。这项为期三年的计划将培训每年夏天的十二名大学生八周。埃默里(Emory)数学和计算机科学系的教职员工将监督和心理学生。该网站的活动旨在激励本科生在该领域攻读研究生学位,并为他们提供在学术界和行业开展职业所需的数学和计算技能。学生招募将在全国范围内,重点关注代表性不足的团体和研究机会有限的大学的学生。 REU网站将向本科生介绍计算和机器学习工具的数学理论,并帮助他们解决数学和相关领域的开放问题。在理论,模型和计算方法中,数学突破是从越来越大且复杂的数据集中提取知识的,并收获人工智能导致新解决方案和发现的潜力。此REU网站将使本科生团队能够在计算数学与数据科学之间的界面上做出贡献。该REU网站的年度研究主题广泛,包括成像科学的学习(2024),将模型与数据(2025)结合在一起,并发现了与计算和机器学习方法(2026)的新数学。将向学生介绍各种数学技术,包括机器学习,深度神经网络,数值和符号计算,优化,微分方程和正式数学。这些项目旨在促进学习并创建与科学界相关的新见解。这些见解将在由学生创作的出版物,开源软件和在线博客中开发和传播。每周的开创性还将通过专业指导和研究技能(包括科学写作,口头和海报演示以及云计算)提供他们的指导。有关该网站的更多信息,请参见http://www.math.emory.edu/site/cmds-reeret/.this奖奖,反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响审查标准通过评估来评估的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lars Ruthotto其他文献

A Neural Network Approach for High-Dimensional Optimal Control Applied to Multiagent Path Finding
应用于多智能体路径查找的高维最优控制神经网络方法
Atlas-Based Whole-Body PET-CT Segmentation Using a Passive Contour Distance
使用被动轮廓距离进行基于 Atlas 的全身 PET-CT 分割
  • DOI:
    10.1007/978-3-642-36620-8_9
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    F. Gigengack;Lars Ruthotto;Xiaoyi Jiang;J. Modersitzki;M. Burger;S. Hermann;K. Schäfers
  • 通讯作者:
    K. Schäfers
Learning across scales - A multiscale method for Convolution Neural Networks
跨尺度学习 - 卷积神经网络的多尺度方法
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Haber;Lars Ruthotto;E. Holtham
  • 通讯作者:
    E. Holtham
A stabilized multigrid solver for hyperelastic image registration
用于超弹性图像配准的稳定多重网格求解器
Never look back - A modified EnKF method and its application to the training of neural networks without back propagation
永不回头 - 一种改进的 EnKF 方法及其在无反向传播神经网络训练中的应用
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Haber;F. Lucka;Lars Ruthotto
  • 通讯作者:
    Lars Ruthotto

Lars Ruthotto的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lars Ruthotto', 18)}}的其他基金

REU/RET Site: Computational Mathematics for Data Science
REU/RET 网站:数据科学的计算数学
  • 批准号:
    2051019
  • 财政年份:
    2021
  • 资助金额:
    $ 45.5万
  • 项目类别:
    Standard Grant
CAREER: A Flexible Optimal Control Framework for Efficient Training of Deep Neural Networks
职业生涯:用于高效训练深度神经网络的灵活最优控制框架
  • 批准号:
    1751636
  • 财政年份:
    2018
  • 资助金额:
    $ 45.5万
  • 项目类别:
    Continuing Grant
Fast Algorithms for Solving Big Data PDE Parameter Estimation Problems on Cloud Computing Platforms
云计算平台上解决大数据偏微分方程参数估计问题的快速算法
  • 批准号:
    1522599
  • 财政年份:
    2015
  • 资助金额:
    $ 45.5万
  • 项目类别:
    Standard Grant

相似国自然基金

硅藻18S rDNA用于溺死地点推断人工智能预测模型的构建及法医学应用研究
  • 批准号:
    82371901
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
配子生成素GGN不同位点突变损伤分子伴侣BIP及HSP90B1功能导致精子形成障碍的发病机理
  • 批准号:
    82371616
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
中国恐龙骨骼化石时空分布综合研究
  • 批准号:
    42372030
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
计算病理学技术在法医学自动化硅藻检验及溺水地点推断中的应用研究
  • 批准号:
    82371902
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
RET基因634位点不同氨基酸改变对甲状腺C细胞的影响与机制研究
  • 批准号:
    82370790
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目

相似海外基金

REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
  • 批准号:
    2348712
  • 财政年份:
    2024
  • 资助金额:
    $ 45.5万
  • 项目类别:
    Standard Grant
REU Site: Computational Number Theory
REU 网站:计算数论
  • 批准号:
    2349174
  • 财政年份:
    2024
  • 资助金额:
    $ 45.5万
  • 项目类别:
    Continuing Grant
REU Site: ACRES: Advanced Computational Research Experience for Students
REU 网站:ACRES:学生的高级计算研究体验
  • 批准号:
    2349002
  • 财政年份:
    2024
  • 资助金额:
    $ 45.5万
  • 项目类别:
    Standard Grant
REU Site: Computational and Data Intensive Astrophysics at the University of Florida
REU 网站:佛罗里达大学的计算和数据密集型天体物理学
  • 批准号:
    2348547
  • 财政年份:
    2024
  • 资助金额:
    $ 45.5万
  • 项目类别:
    Standard Grant
REU Site: Computational and Applied Mathematics Program
REU 网站:计算和应用数学项目
  • 批准号:
    2348984
  • 财政年份:
    2024
  • 资助金额:
    $ 45.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了