A study on value distribution properties of meromorphic functions generated by a wide variety of series and an investigation into their possible algebraic analogues

对各种级数生成的亚纯函数的值分布特性的研究及其可能的代数类似物的研究

基本信息

  • 批准号:
    22K03335
  • 负责人:
  • 金额:
    $ 2.75万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2022
  • 资助国家:
    日本
  • 起止时间:
    2022-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

本課題研究のための準備の過程において、値分布論の主要な議論の中で差分(シフト)作用素が微分作用素と同程度に機能すること、即ち類似した多くの評価式や定理が成立することが確認できており、またこれらの結果についてしばしば極値的な挙動を示す代表例である指数多項式が持つ函数論的性質、特に零点分布や微分的代数退化性について多くの知見を得ていた。本報告の対象期間では、それらを数論的な観点から再検討し新たな進展の可能性を求めて研究を実施した。また、複素解析学のかなり広い領域でもやはり差分(シフト)作用素が微分作用素と同等性を持ち得ることを基礎に、それらの超離散的な読み替えやネバンリンナ理論類似が導出されることから、S. Vojta や野口潤次郎らの業績に鑑みたとき、ディオファントス近似理論への寄与を模索することは自然であった。差分(シフト)を数論的な作用として如何に活用するかについて、具体的な例や古典的な結果の観察を通して今回特に連分数展開を中心に据えた議論が有益であることを確認した。これが今後も重要な研究指針になる。一方で当該年度の初期では、まず日本数学会特別講演の機会を得て Stothers-Mason の定理の差分版を導出する際に用いた手法が方程式 a+b=c を満たす整数列に対していかなる評価を与えうるかについての観察と検証を深化させ、また Vojta のディオファントス近似理論とは異なる形で、特に差分(シフト)作用に対応した評価の可能性を模索し既知の結果をその側面から再発見できるか否かを調査した。その結果として今後の本課題研究期間に於いて明らかにすべき問題や予想を見出すに至った。さらに差分方程式について国際共同研究を継続して、その成果をプレプリントとしてまとめたことなどが本年度の研究実績の概要である。
在这项研究的准备过程中,已经证实,在价值分布理论的主要讨论中,差分运算符的功能与差分运算符的水平相同,即建立了许多相似的评估公式和定理,并且已经获得了许多知识,并且对指数性多项式的函数理论属性进行了函数理论属性,这些属性通常是这些结果,这些结果通常表现出极端的分布,尤其是零分布的范围。在本报告所涵盖的期间,从数值理论的角度审查了这些内容,并进行了研究以寻找新的发展的可能性。此外,鉴于S. vojta和Noguchi Junjiro的成就,自然而然地寻求对Diophantos近似理论的贡献是很自然的,因为它们源于以下事实,即即使在相当广泛的复杂分析中,差异操作员仍然可以等同于差异操作员。我们证实,这次,通过观察具体的示例和经典结果,讨论如何利用差异(变化)作为数值理论效应特别有用,这重点是连续分数的发展。这将继续是重要的研究指南。另一方面,在今年年初,我们首先借此机会就日本数学学会进行了特别演讲,以加深我们的观察和验证,并验证哪种评估用于得出Stothers-Mason定理的差异版本可以为Integer序列提供的差异版本,从而使等式A+b = C,并探索了与评估的可能性不同,并探索了与评估的可能性不同,这些方法是不同的。理论,特别是在响应差异(移位)效应的情况下,并研究了是否可以从这方面重新发现已知结果。结果,我们已经找到了在此主题的未来研究期间应该澄清的问题和预测。此外,对今年研究结果的概述包括继续国际联合研究对差异方程式进行,并将结果汇​​编为预印本。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
University of Eastern Finland(フィンランド)
东芬兰大学(芬兰)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
値分布理論からの Stothers-Mason の 定理再訪 Revisiting the Stohers-Mason theorem with Nevanlinna
与 Nevanlinna 一起从价值分布理论重新审视 Stothers-Mason 定理
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heittokangas Janne;Ishizaki Katsuya;Tohge Kazuya;Wen Zhi‐Tao;藤解和也 Kazuya Tohge
  • 通讯作者:
    藤解和也 Kazuya Tohge
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

藤解 和也其他文献

The Order and Type Formulas for Tropical Entire Functions
热带全函数的阶次和类型公式
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Risto Korhonen;Kazuya Tohge;Kazuya Tohge;Kazuya Tohge;Kazuya Tohge;Kazuya Tohge;Kazuya Tohge;藤解 和也;Kazuya Tohge
  • 通讯作者:
    Kazuya Tohge
Holomorphic curves with shift-invariant hyperplane preimages(R.Halburd,R.Korhonenと共同)
具有平移不变超平面原像的全纯曲线(与 R.Halburd 和 R.Korhonen 合作)
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Kadowaki;H. Nakazawa;and K. Watanabe;山岡直人;藤解 和也
  • 通讯作者:
    藤解 和也
From Nevanlinna theory and function theory to Tropical Nevanlinna theory and max-plus function theory
从Nevanlinna理论和函数理论到热带Nevanlinna理论和最大加函数理论
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Risto Korhonen;Kazuya Tohge;Kazuya Tohge;Kazuya Tohge;Kazuya Tohge;Kazuya Tohge;Kazuya Tohge;藤解 和也
  • 通讯作者:
    藤解 和也

藤解 和也的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('藤解 和也', 18)}}的其他基金

有理型函数と正則曲線の値分布の研究と複素力学系、微分・函数方程式への応用
研究有理函数和正则曲线的值分布,以及在复杂动力系统、微分和函数方程中的应用
  • 批准号:
    12740085
  • 财政年份:
    2000
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
値分布論の応用による複素力学系及び複素微分方程式とその関連分野の研究
应用价值分布理论研究复杂动力系统、复杂微分方程及相关领域
  • 批准号:
    09740095
  • 财政年份:
    1997
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
値分布論および複素力学系の研究と微分方程式の理論への応用
值分布理论和复杂动力系统研究及其在微分方程理论中的应用
  • 批准号:
    08740094
  • 财政年份:
    1996
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
値分布理論の研究と複素力学系及び代数型面間の解析写像への応用について
价值分布理论及其在复杂动力系统与代数曲面解析映射中的应用研究
  • 批准号:
    07740097
  • 财政年份:
    1995
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
複素平面上の有理型函数及び代数型函数の値分布
复平面上有理函数和代数函数的值分布
  • 批准号:
    06640219
  • 财政年份:
    1994
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

L関数の確率論的値分布論
L函数的随机值分布理论
  • 批准号:
    22KJ1263
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Probabilistic models of zeta-functions and applications to number theory
Zeta 函数的概率模型及其在数论中的应用
  • 批准号:
    22KJ2747
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
特異ランダム行列の固有値分布論の発展とその統計的応用
奇异随机矩阵特征值分布理论的发展及其统计应用
  • 批准号:
    23K19015
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
多変量解析に関する特異ランダム行列の固有値分布論の新展開
多元分析奇异随机矩阵特征值分布理论的新进展
  • 批准号:
    22KJ2804
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
差分方程式の解の与える微分超越性への影響について
论微分方程的解对微分超越性的影响
  • 批准号:
    23K03154
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了