捩れをもつ接続の幾何学

扭曲连接的几何形状

基本信息

  • 批准号:
    13874010
  • 负责人:
  • 金额:
    $ 1.28万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Exploratory Research
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2003
  • 项目状态:
    已结题

项目摘要

Kahler-Ricci solitonのように、ケーラー幾何の枠組みを少しひろげて、捩れが零でない場合をうまく扱える場合があります。たとえばZhuらの目覚しい結果で、トーリック・ファノ多様体上Kahler-Ricci solitonの存在を示すことによって、二木指標が消えるトーリック・ファノ多様体に常にKahler-Einstein計量が入る事が最近示されたという事実があります。このKahler-Ricci solitonをもっと一般化したmultiplier-Hermition計量というものの幾何学を組織的系統的にとらえ、その一般論を展開しました。現在はKahler-Ricci solitonの存在や一意性を考えるだけでなくその種々の応用を考えるという段階に進んでいます。上に挙げたトーリック・ファノ多様体に対する結果がその代表的な例ですが、同様の応用をmultiplier Hermition多様体に対しても行うことを模索しているというのが現在の状況です。
像Kahler-Ricci Soliton一样,您可以稍微扩展Kohler几何形状,并处理扭转不为零的情况。例如,Zhu等人的显着结果。最近显示的是,通过指示Kahler-ricci Soliton在曲曲诺歧管上的存在,Kahler-Einstein指标始终适用于nitki索引消失的复曲fano歧管。我们已经组织并系统地捕获了乘数 - 热量指标的几何形状,该度量是一个更广泛的Kahler-Icricci Soliton,并开发了一般理论。目前,我们不仅在考虑Kahler-Icci Soliton的存在和独特性,而且还考虑了其​​各种应用。上述曲奇 - 法诺歧管的结果是典型的例子,但目前的情况是,他们正在寻求在乘数赫本歧管上实施类似的应用。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Mabuchi, Y.Nakagawa: "The Bando-Calabi-Futaki character as an obstruction to semistability"Math.Ann.. vol.324. 187-193 (2002)
T.Mabuchi、Y.Nakakawa:“Bando-Calabi-Futaki 字符作为半稳定的障碍”Math.Ann.. vol.324。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Mabuchi: "Multiplier Hermitian Structures on Kahler manifolds"Nagoya Math.J.. 170. 1-43 (2003)
T.Mabuchi:“卡勒流形上的乘数埃尔米特结构”Nagoya Math.J.. 170. 1-43 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Mabuchi, T.: "A theorem of Calabi-Matsushimaz's type"Osaka J. Math. 39. 1-9 (2002)
Mabuchi, T.:“卡拉比-松岛马兹型定理”Osaka J. Math。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Mabuchi: "A topological Albanese map of a higher order"Lecture Note Series in Math., Osaka Univ.. vol.7. 177-193 (2002)
T.Mabuchi:“高阶拓扑阿尔巴尼亚图”大阪大学数学讲义系列第 7 卷。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A.Fujiwara: "Quantum parameter estimation of a generalized Pauli channel"J.Physics A. 36. 8093-8103 (2003)
A.Fujiwara:“广义泡利通道的量子参数估计”J.Physics A. 36. 8093-8103 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

満渕 俊樹其他文献

満渕 俊樹的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('満渕 俊樹', 18)}}的其他基金

The Chow norm and the existence problem of extremal metrics
Chow范数与极值度量的存在问题
  • 批准号:
    18K03277
  • 财政年份:
    2018
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Orbifold上の仮想balanced計量の研究
Orbifold虚拟平衡度量研究
  • 批准号:
    18654011
  • 财政年份:
    2006
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
正則写像のモジュライ空間の数理物理学的研究
全纯映射模空间的数学和物理研究
  • 批准号:
    09874019
  • 财政年份:
    1997
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
ケーラー多様体上の相対エントロピー
卡勒流形上的相对熵
  • 批准号:
    08211237
  • 财政年份:
    1996
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
複素幾何の総合研究
复杂几何的综合研究
  • 批准号:
    07304061
  • 财政年份:
    1995
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)
モーメント写像のQ構造
矩图的Q结构
  • 批准号:
    06221248
  • 财政年份:
    1994
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
モーメント写像の諸構造
矩图的结构
  • 批准号:
    06640132
  • 财政年份:
    1994
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
幾何構造の退化とモジュライのコンパクト化
几何的简并性和模量的紧致化
  • 批准号:
    05804005
  • 财政年份:
    1993
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
周期写像とモジュライ空間のコンパクト化
周期映射和模空间的紧缩
  • 批准号:
    04245227
  • 财政年份:
    1992
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
幾何学的諸構造とそのモジュライ空間
几何结构及其模空间
  • 批准号:
    03640052
  • 财政年份:
    1991
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了