Research on finite type invariants and local moves for welded links

焊接链接有限类型不变量和局部移动的研究

基本信息

  • 批准号:
    23K12973
  • 负责人:
  • 金额:
    $ 2.91万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
  • 财政年份:
    2023
  • 资助国家:
    日本
  • 起止时间:
    2023-04-01 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

和田 康載其他文献

On a generalization of the volume conjecture for cable knots
关于索结体积猜想的推广
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Murakami;和田 康載;H. Murakami
  • 通讯作者:
    H. Murakami
Dedekind symbolと保型形式
戴德金符号和自守形式
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    和田 康載;宮澤治子;安原晃;福原真二
  • 通讯作者:
    福原真二
Quantum dilogarithm and quantum invariant
量子二对数和量子不变量
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Murakami;和田 康載;H. Murakami;K.Hikami;K. Hikami;K. Hikami
  • 通讯作者:
    K. Hikami
交差の多重化から得られるウェルデッド絡み目の不変量
从交叉点复用获得的焊接链接的不变量
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    和田 康載;宮澤治子;安原晃
  • 通讯作者:
    安原晃
Quantum modular form from knots and 3-manifolds
结和 3 流形的量子模块化形式
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Murakami;和田 康載;H. Murakami;K.Hikami
  • 通讯作者:
    K.Hikami

和田 康載的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('和田 康載', 18)}}的其他基金

Extension of Milnor link invariants to linkoids
Milnor 链接不变量到链接体的扩展
  • 批准号:
    21K20327
  • 财政年份:
    2021
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Finite type invariants and Milnor invariants for welded string links
焊接字符串链接的有限类型不变量和 Milnor 不变量
  • 批准号:
    19J00006
  • 财政年份:
    2019
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Milnor invariants of clover links
三叶草链接的米尔诺不变量
  • 批准号:
    17J08186
  • 财政年份:
    2017
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows

相似海外基金

ホモロジーシリンダーに関わる群の構造の解明
阐明与同源柱相关的群的结构
  • 批准号:
    23K12974
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
簡約化したスケイン代数とデーン・ツィストの公式による低次元トポロジーの研究
使用简化Skeyne代数和Dehn-Zist公式研究低维拓扑
  • 批准号:
    22K13918
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Research on finite type invariants and Milnor invariants by clasper theory
基于clasper理论的有限类型不变量和Milnor不变量研究
  • 批准号:
    20K14322
  • 财政年份:
    2020
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Study of categorificaitons of Vassiliev invariants
Vassiliev不变量的分类研究
  • 批准号:
    20K03604
  • 财政年份:
    2020
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topology of the embedding spaces and the finite type invariants
嵌入空间的拓扑和有限类型不变量
  • 批准号:
    20K03608
  • 财政年份:
    2020
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了