1-D Multi-Gate FETs: Tailoring the Potential Landscape on the Nanoscale

一维多栅极 FET:定制纳米尺度的潜在前景

基本信息

项目摘要

One-dimensional (1-D) materials such as nanowires and nanotubes have attracted a great deal of attention recently as buildings blocks of future nanoelectronics systems. This interest is in part due to the small geometry that allows realizing optimum scalability of the devices due to the strong electrostatic gate control in e.g. wrap-gate device structures. In addition, nanowires/tubes enable one-dimensional electronic transport that has a number of benefits such as a rather long mean free path for scattering or the highly linear transfer characteristics. Furthermore, the combination of 1-D transport and excellent gate control enables a tight control over the potential distribution within the device. While it is common practice to use gates in order to manipulate the potential profile of transistor device based on novel materials so far only a small number of gates has been used and these gates exhibit a length on the order of several tens to hundreds of nanometers and/or are placed far apart from each other prohibiting a manipulation of the potential profile on the nanoscale. The aim of the present proposal is to realize a 1-D multi-gate device architecture where a large number of gates (on the order of 10 and more) with lengths in the few nanometer range will be placed next to each other with a few nanometers inter-gate distances. This device layout allows tailoring the conduction/valence band profile along the device on the nanoscale due to the excellent gate control in 1-D nanostructures; hence this band tailoring allows studying the full potential of 1-D structures for nanoelectronics. Two different demonstrations will be pursued within the project: First, a gate-induced superlattice structure will be realized in e.g. carbon nanotubes and/or InAs nanowires. With appropriate dimensions this superlattice will serve as an energy filter enabling a so-called steep slope transistor that operates at very low supply voltages and hence facilitates ultra-low power nanoelectronics systems. Second, we will adjust the band profile along the channel in order to maximize the linearity of the transfer characteristics of the 1-D device.
纳米线和纳米管等一维(1-D)材料最近引起了广泛的关注,因为建筑物的建筑物阻滞了未来的纳米电子系统。这种兴趣部分是由于小的几何形状允许实现设备的最佳可扩展性,这是由于强大的静电门控件(例如,例如包裹盖设备结构。此外,纳米线/管启用了一维电子传输,具有许多好处,例如散射的平均均值自由路径或高度线性传递特性。此外,1-D传输和出色的栅极控制的组合可以严格控制设备内电势分布。虽然通常使用大门来操纵基于新型材料的晶体管设备的潜在曲线是普遍的做法/或将彼此远距离放置,禁止操纵纳米级的潜在轮廓。本提案的目的是实现一个1D多门设备架构,其中大量的门(按10及以上的顺序),长度在几个纳米范围内,将彼此放置,几个范围纳米间距离距离。由于1-D纳米结构中出色的栅极控制,因此该设备布局允许沿纳米级设备的设备调整传导/价带轮廓。因此,该带裁缝允许研究纳米电子学的1-D结构的全部潜力。项目中将进行两种不同的示威活动:首先,将在例如碳纳米管和/或INAS纳米线。在适当的尺寸的情况下,该超级晶格将用作能量滤波器,使能够在非常低的电源电压下运行的所谓陡坡晶体管,因此有助于超低功率纳米电子系统。其次,我们将沿通道调整频带轮廓,以最大程度地提高1-D设备传输特性的线性。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Alternatives for Doping in Nanoscale Field‐Effect Transistors
  • DOI:
    10.1002/pssa.201700969
  • 发表时间:
    2018-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Felix Riederer;T. Grap;Sergej Fischer;M. Mueller;Daichi Yamaoka;Bin Sun;Charu Gupta;K. Kallis;J. Knoch
  • 通讯作者:
    Felix Riederer;T. Grap;Sergej Fischer;M. Mueller;Daichi Yamaoka;Bin Sun;Charu Gupta;K. Kallis;J. Knoch
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Joachim Knoch其他文献

Professor Dr. Joachim Knoch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Joachim Knoch', 18)}}的其他基金

High yield, low variability – Employing silicon CMOS technology for the realization of spin qubits
高产量、低变异性 – 采用硅 CMOS 技术实现自旋量子位
  • 批准号:
    421769186
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Reconfigurable Field-Effect-Transistors
可重构场效应晶体管
  • 批准号:
    397662129
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Coupling of quantum dots with superconductors- towards long-range coupling of qubits
量子点与超导体的耦合——实现量子位的长程耦合
  • 批准号:
    387743155
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Strained Graphene Field-Effect Transistor - Nano-electro-mechanical transistors for low power applications and locally adjustable electronic properties
应变石墨烯场效应晶体管 - 用于低功率应用和局部可调电子特性的纳米机电晶体管
  • 批准号:
    242588083
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Elektrostatisch dotierte, laterale Source/Drain Kontakte in Nanodraht Tunnel Feld-Effekt Transistoren
纳米线隧道场效应晶体管中的静电掺杂横向源极/漏极接触
  • 批准号:
    183625203
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Experimental and theoretical investigations of mono- and bilayer graphene nanoribbon band-to-band tunneling field-effect transistors
单层和双层石墨烯纳米带带间隧道场效应晶体管的实验和理论研究
  • 批准号:
    172597456
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Entwicklung einer Technologie für die Herstellung eines High-Electron-Mobility Transistors
开发高电子迁移率晶体管的制造技术
  • 批准号:
    5338108
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
Cryogenic Complementary Metal-Oxide-Semiconductor Technology for the Realization of Classical QuBit-Control Circuits
用于实现经典量子位控制电路的低温互补金属氧化物半导体技术
  • 批准号:
    422581876
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

基于轨道角动量的高维量子逻辑门研究
  • 批准号:
    62371202
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
云南热泉佩特斯细菌门(候选门级辐射类群)的多样性及其与宿主互作和适应性进化机制研究
  • 批准号:
    32300001
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
长角血蜱电压门控钠离子通道基因突变及其与溴氰菊酯抗性关系的研究
  • 批准号:
    32373037
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
布氏田鼠应对植物次生代谢物门布(6-MBOA)的胃肠道菌群适应机制
  • 批准号:
    32370438
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于单分子微纳调控的片上全同光子源及纠缠量子逻辑门
  • 批准号:
    12374349
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

SiGe Channel FETs for High-Performance CMOS with Advanced High-K/SiGe Gate Stack
用于高性能 CMOS 的 SiGe 通道 FET,具有先进的高 K/SiGe 栅极堆栈
  • 批准号:
    20J10380
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Understanding Channel Conductance Mechanism of Hf-based Ferroelectric-gate FETs Toward the Artificial Neural Network Application
了解铪基铁电栅 FET 的沟道电导机制以实现人工神经网络应用
  • 批准号:
    19K15021
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
EAGER: Hot Carrier Effects in Novel Miniaturized Gate-All-Around (GAA) Field Effect Transistors (FETs)
EAGER:新型小型化全栅 (GAA) 场效应晶体管 (FET) 中的热载流子效应
  • 批准号:
    1843883
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Strukturnahe Modellierung von Nanoscale Multiple-Gate FETs zur Schaltungssimulation
用于电路仿真的纳米级多栅极 FET 的结构建模
  • 批准号:
    182932826
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Pyroelectric infrared sensor using carbon nanotube FETs with ferroelectric gate
使用具有铁电栅极的碳纳米管 FET 的热释电红外传感器
  • 批准号:
    20241035
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了