EAGER: Hot Carrier Effects in Novel Miniaturized Gate-All-Around (GAA) Field Effect Transistors (FETs)

EAGER:新型小型化全栅 (GAA) 场效应晶体管 (FET) 中的热载流子效应

基本信息

  • 批准号:
    1843883
  • 负责人:
  • 金额:
    $ 11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

The demand for smaller, more efficient electronics has driven commercial companies to push the limits of scaling for transistors. Devices have moved from the 2D paradigm into the 3D paradigm for single transistors on the order of tens of nanometers. Highly miniaturized devices introduce reliability concerns such as hot carrier injection, where large undesirable currents lead to overall lifetime degradation and poor performance. Engineers often use simulation tools to understand hot carrier effects in devices. In order to reduce complexity and simulation time these tools abstract away much of the detailed physics which is necessary for the complex and miniaturized novel devices used today. This work will use a novel 3D simulation approach that is able to capture the necessary detailed physics for modeling the next- generation of devices. Understanding the physics of failure for these devices will ultimately lead to smaller, cheaper and more reliable electronics for the end user. This work also has the potential to impact our understanding of complimentary devices (e.g. LEDs, Solar Cells, etc.) and has implications for the renewable energy industry, resulting in increased access to affordable, reliable and clean energy to consumers around the world.This work will use a Monte Carlo code suite with full-band capabilities to perform the first of its kind 3D model of hot carrier injection in gate-all-around field effect transistors. Anduril could prove to be the next gold standard of device simulation tools for modern 3D mianiaturized technologies. 3D simulations of hot carrier injection in stacked gate-all-around transistors will be compare to experimental characterization proposed in this work. The PI has access to vertically stacked gate-all-around transistors from imec which have been shown to have near-ideal subthreshold slopes (~67 mV/dec). With the PI?s secondary appointment she has the ability to recruit graduate talent and access to a full suite of reliability testing equipment in the Radiation and Reliability group at Vanderbilt. DC stress conditions and 1/f noise measurements will be conducted under the advisement of the PI at Vanderbilt. Additionally, simulations using the Anduril code suite will be conducted using the ACCRE super- computing cluster. Simulations will occur in phases beginning with a single gate-all-around transistor, whose reliability has been studied experimentally, and ultimately a stacked gate-all-around architecture, whose reliability is less understood. The work proposed by the PI is timely and relevant given the current trends moving to vertically stacked gate-all-around transistors, and the large knowledge gaps that still exist for understanding the physics of failure driving hot carrier degradation in these devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对更小、更高效的电子产品的需求促使商业公司突破晶体管尺寸的极限。器件已从 2D 范例转变为数十纳米数量级的单个晶体管的 3D 范例。高度小型化的器件会带来可靠性问题,例如热载流子注入,其中大的不良电流会导致整体寿命下降和性能不佳。工程师经常使用仿真工具来了解器件中的热载流子效应。为了降低复杂性和仿真时间,这些工具抽象了许多详细的物理原理,而这些物理原理对于当今使用的复杂和小型化的新颖设备来说是必需的。这项工作将使用一种新颖的 3D 模拟方法,该方法能够捕获建模下一代设备所需的详细物理信息。了解这些设备故障的物理原理最终将为最终用户带来更小、更便宜和更可靠的电子产品。这项工作还有可能影响我们对互补设备(例如 LED、太阳能电池等)的理解,并对可再生能源行业产生影响,从而使世界各地的消费者能够更多地获得负担得起的、可靠的和清洁的能源。这项工作将使用具有全频带功能的蒙特卡罗代码套件来执行环栅场效应晶体管中第一个热载流子注入的 3D 模型。 Anduril 可能会成为现代 3D 微型化技术设备模拟工具的下一个黄金标准。堆叠环栅晶体管中热载流子注入的 3D 模拟将与本工作中提出的实验表征进行比较。 PI 可以使用imec 的垂直堆叠环栅晶体管,该晶体管已被证明具有接近理想的亚阈值斜率(~67 mV/dec)。通过 PI 的二次任命,她有能力招募研究生人才并使用范德比尔特辐射和可靠性小组的全套可靠性测试设备。直流应力条件和 1/f 噪声测量将在范德堡大学 PI 的建议下进行。此外,还将使用 ACCRE 超级计算集群进行使用 Anduril 代码套件的模拟。仿真将分阶段进行,从单个环栅晶体管开始,其可靠性已通过实验研究,最终是堆叠环栅架构,其可靠性尚不清楚。考虑到当前趋势转向垂直堆叠环栅晶体管,以及在理解这些器件中导致热载流子退化的故障的物理原理方面仍然存在巨大的知识差距,PI 提出的工作是及时且相关的。该奖项反映了通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephanie Weeden-Wright其他文献

Stephanie Weeden-Wright的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

功能化热释电纳米载体用于乳腺癌的热动力学/免疫联合治疗
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新型高效siRNA纳米载体的构建及其蛋白冠在体磁热调控与转染增效机制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
热响应自促释放型纳米载体用于解偶联介导的深层肿瘤热治疗研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
红细胞膜修饰智能聚合物纳米囊泡的制备及其在肿瘤靶向热疗化疗与免疫联合治疗中的应用研究
  • 批准号:
    51903171
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于改性热解有机物制备高水合性植物益生菌载体的研究
  • 批准号:
    41907068
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

van der Waals Heterostructures for Next-generation Hot Carrier Photovoltaics
用于下一代热载流子光伏的范德华异质结构
  • 批准号:
    EP/Y028287/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11万
  • 项目类别:
    Fellowship
Towards the Realization of the Hot Carrier Solar Cell using Valley Photovoltaics
利用 Valley Photovoltaics 实现热载流子太阳能电池
  • 批准号:
    2406002
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Energy resolving photodetection through extracting hot carrier photocurrent
通过提取热载流子光电流进行能量分辨光电探测
  • 批准号:
    DP220101532
  • 财政年份:
    2022
  • 资助金额:
    $ 11万
  • 项目类别:
    Discovery Projects
Investigation of phonon scattering in superlattices for design of efficient multiple quantum-well hot carrier solar cells
研究超晶格中的声子散射,以设计高效的多量子阱热载流子太阳能电池
  • 批准号:
    2115067
  • 财政年份:
    2021
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Collaborative Research: OP: Transition Metal Alloys: Emergent Properties for Near-Infrared Hot-Carrier Optoelectronics
合作研究:OP:过渡金属合金:近红外热载流子光电器件的新兴特性
  • 批准号:
    2114312
  • 财政年份:
    2021
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了