High yield, low variability – Employing silicon CMOS technology for the realization of spin qubits

高产量、低变异性 – 采用硅 CMOS 技术实现自旋量子位

基本信息

项目摘要

In recent years, all building blocks for quantum computation using spin qubits were demonstrated in electrostatically defined spin qubits based on e.g. GaAs or Si. Remaining manipulation infidelities are tolerable by using a surface code which requires a large number of physical qubits. As a result, the feasibility of a spin qubit quantum computer is directly related to the scalability of the system. However, even state-of-the-art qubit realizations rely on a rather immature fabrication technology with very low yield and large device-to-device variability. Furthermore, complex multi-layer gate patterns will be required to improve the confinement potentials and to realize new functionalities e.g. a quantum bus. In the current project a qubit technology will be developed that is based on fabrication techniques derived from industrial silicon CMOS technology ensuring scalability and a high yield of our approach. Due to the low-temperature operation and in order to guarantee tunability of the qubits a very large number of nanoscale gate electrodes will be realized on top of a semiconductor heterostructure in which the single electron spin representing qubits will be defined electrostatically. For the realization of these gate structures we will use the so-called (multiple) spacer process which not only avoids the need for highly sophisticated nanolithography (such as electron-beam lithography). More importantly, it significantly reduces the device-to-device variability. This strongly increases the yield and in addition might even allow a reduction of the total number of gates necessary to electrostatically tune the individual qubits. The fabrication will be carried out with the lowest possible ther-mal budget such that the impact on the heterostructure is minimized (e.g. no reduction of valley splitting in Si/SiGe quantum wells) and that the developed technology can be used for different substrates such as GaAs/AlGaAs.Throughout the project MBE-grown Si/SiGe multi-quantum dot samples will be fabricated. The gate-tunability of the quantum dots, the electrostatic noise and the valley splitting are determined by transport measurements at ~20 mK. Qubit functionality such as charge-readout by an adjacent read-out quantum dot and spin-to-charge conversion will be demonstrated. Within the project we aim at extending the number of quantum dots to 40 without losing tunability and functionality of each quantum dot. The multi-quantum dot samples allow mapping the valley splitting variability over a large area. Combining the development of appropriate fabrication technologies to facilitate groundbreaking work on multi quantum dot/qubit devices our approach has the potential to provide highly relevant contributions to the science and technology of the field. Furthermore, since the technology devel-opment will be as close as possible to current industrial processes it may help accelerating the realization of future quantum information processors.
近年来,使用自旋量子位进行量子计算的所有构建模块都在基于静电定义的自旋量子位中得到了证明。砷化镓或硅。通过使用需要大量物理量子位的表面代码,剩余的操纵不忠是可以容忍的。因此,自旋量子位量子计算机的可行性直接关系到系统的可扩展性。然而,即使是最先进的量子位实现也依赖于相当不成熟的制造技术,其产量非常低,并且器件之间的差异很大。此外,需要复杂的多层栅极图案来提高限制潜力并实现新功能,例如量子总线。 在当前的项目中,将开发一种量子位技术,该技术基于源自工业硅 CMOS 技术的制造技术,确保我们的方法的可扩展性和高产量。由于低温操作并且为了保证量子位的可调谐性,将在半导体异质结构顶部实现大量纳米级栅电极,其中代表量子位的单电子自旋将被静电定义。为了实现这些栅极结构,我们将使用所谓的(多重)间隔工艺,这不仅避免了对高度复杂的纳米光刻(例如电子束光刻)的需要。更重要的是,它显着降低了设备之间的差异。这极大地提高了产量,此外甚至可以减少静电调谐各个量子位所需的门总数。制造将以尽可能低的热预算进行,从而最大限度地减少对异质结构的影响(例如,不会减少 Si/SiGe 量子阱中的谷分裂),并且所开发的技术可用于不同的基板,例如GaAs/AlGaAs。整个项目将制造 MBE 生长的 Si/SiGe 多量子点样品。量子点的栅极可调性、静电噪声和谷分裂由~20 mK 的传输测量确定。将演示量子位功能,例如通过相邻读出量子点进行电荷读出以及自旋到电荷转换。在该项目中,我们的目标是将量子点的数量扩展到 40 个,同时又不损失每个量子点的可调性和功能。多量子点样本允许绘制大面积的谷分裂变异性。结合适当制造技术的开发来促进多量子点/量子位器件的突破性工作,我们的方法有潜力为该领域的科学和技术提供高度相关的贡献。此外,由于技术开发将尽可能接近当前的工业流程,因此可能有助于加速未来量子信息处理器的实现。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Joachim Knoch其他文献

Professor Dr. Joachim Knoch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Joachim Knoch', 18)}}的其他基金

Reconfigurable Field-Effect-Transistors
可重构场效应晶体管
  • 批准号:
    397662129
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Coupling of quantum dots with superconductors- towards long-range coupling of qubits
量子点与超导体的耦合——实现量子位的长程耦合
  • 批准号:
    387743155
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
1-D Multi-Gate FETs: Tailoring the Potential Landscape on the Nanoscale
一维多栅极 FET:定制纳米尺度的潜在前景
  • 批准号:
    266030637
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Strained Graphene Field-Effect Transistor - Nano-electro-mechanical transistors for low power applications and locally adjustable electronic properties
应变石墨烯场效应晶体管 - 用于低功率应用和局部可调电子特性的纳米机电晶体管
  • 批准号:
    242588083
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Elektrostatisch dotierte, laterale Source/Drain Kontakte in Nanodraht Tunnel Feld-Effekt Transistoren
纳米线隧道场效应晶体管中的静电掺杂横向源极/漏极接触
  • 批准号:
    183625203
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Experimental and theoretical investigations of mono- and bilayer graphene nanoribbon band-to-band tunneling field-effect transistors
单层和双层石墨烯纳米带带间隧道场效应晶体管的实验和理论研究
  • 批准号:
    172597456
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Entwicklung einer Technologie für die Herstellung eines High-Electron-Mobility Transistors
开发高电子迁移率晶体管的制造技术
  • 批准号:
    5338108
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
Cryogenic Complementary Metal-Oxide-Semiconductor Technology for the Realization of Classical QuBit-Control Circuits
用于实现经典量子位控制电路的低温互补金属氧化物半导体技术
  • 批准号:
    422581876
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
  • 批准号:
    12305275
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
PUFAs通过SREBPs提高凡纳滨对虾低盐适应能力的机制研究
  • 批准号:
    32303021
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
催化CO2加氢为低碳烯烃的介孔碳限域Fe系催化剂的可控构筑与调控机制研究
  • 批准号:
    22378345
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于射频指纹物理特征的低轨卫星物联网增强安全认证技术研究
  • 批准号:
    62302082
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
低强度聚焦超声调控前扣带回皮层抑制中枢敏化缓解慢性神经病理性疼痛的机制研究
  • 批准号:
    82360457
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Asian American Prevention Research: A Populomics Epidemiology Cohort (ARISE)
亚裔美国人预防研究:人口组学流行病学队列 (ARISE)
  • 批准号:
    10724884
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Towards treatment for the complex patient: investigations of low-intensity focused ultrasound.
针对复杂患者的治疗:低强度聚焦超声的研究。
  • 批准号:
    10775216
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Prenatal Fatty Acid Supplementation and Early Childhood Asthma and Atopy in Black American Families
美国黑人家庭产前脂肪酸补充剂与儿童早期哮喘和特应性
  • 批准号:
    10586398
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Quantifying the drivers of rice production variability under climate change: high and low temperature stress
量化气候变化下水稻产量变异的驱动因素:高温和低温胁迫
  • 批准号:
    23K05462
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development and implementation of a pediatric AI multi-modal digital stethoscope and respiratory surveillance system in South Africa
在南非开发和实施儿科人工智能多模态数字听诊器和呼吸监测系统
  • 批准号:
    10740943
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了