Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
基本信息
- 批准号:2347024
- 负责人:
- 金额:$ 42.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project will develop a framework for rapid and accurate design-space explorations of application-level workloads assuming technology-enabled in-memory computing (IMC), which is at present being investigated for a range of application spaces (AI/machine learning, bioinformatics, graph processing, etc.). IMC is of great interest as more and more compute workloads must process ever growing amounts of data. Frequently, the energy and latency associated with data transfer from a computer’s memory to a processor can overwhelm the cost of the processing itself. As such, it is highly desirable to co-locate processing and memory. Work in the project will result a publicly available, curated framework that leverages both existing device models and design tools, and that incorporates new device models and design tools to properly evaluate the IMC design space with at-scale, application-level workloads. A modeling and evaluation infrastructure will be developed to address the above design/evaluation challenges as there is an obvious need to explore a vast design space. Investigators in this project will also work with K-8 teachers to augment existing STEM curricula with material that exposes students to fundamental concepts and skills in computer science. This is especially relevant as computer science concepts are now assessed on state-wide standardized tests. Students from under-represented groups will be recruited and mentored via REU experiences.To explore the IMC design space, device-level modeling, circuit/architectural-level modeling, device non-ideality (e.g., variation) analysis, and ways to integrate heterogeneous architectural solutions that target specific application-level workloads must all be studied. In the IMC space, (i) the number of candidate technologies is large and ever-changing, (ii) multiple candidate IMC circuits and architectures – e.g., computing at the array periphery (CAP), content addressable memories (CAMs) and crossbars – exist, (iii) IMC solutions may be more susceptible to device variations/non-idealities, and this impact must be captured at the application level, (iv) emerging technology-enabled IMC solutions may be used with existing architectural solutions and/or in a variety of heterogenous designs, and (v) there are effectively an infinite number of application-level mappings/potential algorithmic changes that one might consider. With respect to device models, there is a deliberate focus on ferroelectric devices – i.e., front-end-of-line silicon ferroelectric field effect transistors, back-end-of-line metal-oxide ferroelectric field effect transistors, and multi-gate ferroelectric field effect transistors – owing to ever-growing interest in this technology as well as the need to consider monolithic 3D processing/memory systems. For IMC circuits/architectures, this project will expand and develop modeling/evaluation tools for two different “flavors” of computing in memory – (i) CAMs (that can report memory entries that best match a given query) and (ii) CAP. For CAMs, representative efforts include projecting figures of merit for binary, ternary, multi-level, and analog CAM arrays (read/write energy and latency, etc.) designs implemented with different non-volatile memories, for different matching functions. Determining optimal CAM array sizes and other design parameters will also be considered. Evaluation of CAP designs for different NVMs will also be developed. For applications, solutions based on IMC fabrics for a subset of applications from MLPerf will be evaluated. MLPerf represents a consortium of AI leaders who have derived relevant workloads for vision, language, etc.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将开发一个框架,用于快速、准确地探索应用程序级工作负载的设计空间,假设技术支持内存计算(IMC),目前正在针对一系列应用程序空间(人工智能/机器学习、生物信息学)进行研究随着越来越多的计算工作负载必须处理不断增长的数据量,IMC 引起了人们的极大兴趣。通常,与从计算机内存到处理器的数据传输相关的能量和延迟可能会压垮整个系统。因此,非常希望将处理和内存放在一起,从而形成一个公开可用的、精心设计的框架,该框架利用现有的设备模型和设计工具,并结合了新的设备模型和技术。由于研究人员显然需要探索广阔的设计空间,因此将开发建模和评估基础设施来解决上述设计/评估挑战。该项目还将与 K-8 教师合作现有的增强 STEM 课程,让学生了解计算机科学的基本概念和技能,这一点尤其重要,因为计算机科学概念现在将通过全州标准化测试进行评估,而来自代表性不足群体的学生将通过 REU 进行招募和指导。要探索 IMC 设计空间、器件级建模、电路/架构级建模、器件非理想性(例如变化)分析以及集成针对特定应用程序级工作负载的异构架构解决方案的方法,必须全部在 IMC 领域,(i) 候选技术数量庞大且不断变化,(ii) 多种候选 IMC 电路和架构 - 例如,阵列外围计算 (CAP)、内容可寻址存储器 (CAM)。和交叉开关 – 存在,(iii) IMC 解决方案可能更容易受到设备变化/非理想的影响,并且必须在应用程序级别捕获这种影响,(iv) 新兴技术支持的 IMC 解决方案可以与现有架构一起使用解决方案和/或各种异构设计,以及(v)实际上存在无限数量的应用级映射/潜在的算法变化,人们可能会考虑到设备模型,特别关注铁电设备 -即前端硅铁电场效应晶体管、后端金属氧化物铁电场效应晶体管和多栅极铁电场效应晶体管——由于人们对该技术以及考虑单片 3D 处理/内存系统的需求,对于 IMC 电路/架构,该项目将扩展和开发两种不同的内存计算“风格”的建模/评估工具 - (i) CAM(可以)。报告与给定查询最匹配的内存条目)和 (ii) 对于 CAM,代表性工作包括预测二进制、三元、多级和模拟 CAM 阵列的品质因数(读/写)。还将考虑针对不同的匹配功能,对不同 NVM 的 CAP 设计进行评估。基于 IMC 结构的 MLPerf 应用子集的解决方案将接受评估 MLPerf 代表了一个由人工智能领导者组成的联盟,他们已经导出了视觉、语言等方面的相关工作负载。该奖项反映了 NSF 的法定使命,并已被视为。值得通过使用基金会的智力优点和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kai Ni其他文献
Ferroelectric compute-in-memory annealer for combinatorial optimization problems
用于组合优化问题的铁电内存计算退火器
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:16.6
- 作者:
Xunzhao Yin;Yu Qian;Alptekin Vardar;Marcel Günther;F. Müller;N. Laleni;Zijian Zhao;Zhouhang Jiang;Zhiguo Shi;Yiyu Shi;Xiao Gong;Cheng Zhuo;Thomas Kämpfe;Kai Ni - 通讯作者:
Kai Ni
Low-Power and Scalable BEOL-Compatible IGZO TFT eDRAM-Based Charge-Domain Computing
- DOI:
10.1109/tcsi.2023.3317170 - 发表时间:
2023-12-01 - 期刊:
- 影响因子:0
- 作者:
Wenjun Tang;Jialong Liu;Chen Sun;Zijie Zheng;Yongpan Liu;Huazhong Yang;Chen Jiang;Kai Ni;Xiao;Xueqing Li - 通讯作者:
Xueqing Li
Carbon Nanotube SRAM in 5-nm Technology Node Design, Optimization, and Performance Evaluation—Part I: CNFET Transistor Optimization
5 纳米技术节点中的碳纳米管 SRAM 设计、优化和性能评估 — 第一部分:CNFET 晶体管优化
- DOI:
10.1109/tvlsi.2022.3146125 - 发表时间:
2022-04-01 - 期刊:
- 影响因子:2.8
- 作者:
Rongmei Chen;Lin;Jie Liang;Yuanqing Cheng;S. Elloumi;Jaehyun Lee;Kangwei Xu;V. Georgiev;Kai Ni;P. Debacker;A. Asenov;A. Todri - 通讯作者:
A. Todri
High Performance Indium-Tin-Oxide Schottky Diodes for Terahertz Band Operation.
用于太赫兹频段运行的高性能氧化铟锡肖特基二极管。
- DOI:
10.1021/acs.nanolett.4c01172 - 发表时间:
2024-06-05 - 期刊:
- 影响因子:10.8
- 作者:
Kaizhen Han;Yuye Kang;Yi;Chaoming Wu;Chengkuan Wang;Long Liu;Gong Zhang;Yue Chen;Kai Ni;Gengchiau Liang;Xiao - 通讯作者:
Xiao
Modeling and Investigating Total Ionizing Dose Impact on FeFET
建模和研究总电离剂量对 FeFET 的影响
- DOI:
10.1109/jxcdc.2023.3325706 - 发表时间:
2023-12-01 - 期刊:
- 影响因子:2.4
- 作者:
Munazza Sayed;Kai Ni;Hussam Amrouch - 通讯作者:
Hussam Amrouch
Kai Ni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kai Ni', 18)}}的其他基金
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2344819 - 财政年份:2023
- 资助金额:
$ 42.82万 - 项目类别:
Standard Grant
CAREER: High-Performance Ferroelectric Memory for In-Memory Computing
职业:用于内存计算的高性能铁电存储器
- 批准号:
2346953 - 财政年份:2023
- 资助金额:
$ 42.82万 - 项目类别:
Continuing Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312884 - 财政年份:2023
- 资助金额:
$ 42.82万 - 项目类别:
Standard Grant
Collaborative Research: CMOS+X: A Device-to-Architecture Co-development and Demonstration of Large-scale Integration of FeFET on CMOS for Emerging Computing Applications
合作研究:CMOS X:用于新兴计算应用的 CMOS 上大规模集成 FeFET 的设备到架构联合开发和演示
- 批准号:
2404874 - 财政年份:2023
- 资助金额:
$ 42.82万 - 项目类别:
Standard Grant
CAREER: High-Performance Ferroelectric Memory for In-Memory Computing
职业:用于内存计算的高性能铁电存储器
- 批准号:
2239284 - 财政年份:2023
- 资助金额:
$ 42.82万 - 项目类别:
Continuing Grant
Collaborative Research: CMOS+X: A Device-to-Architecture Co-development and Demonstration of Large-scale Integration of FeFET on CMOS for Emerging Computing Applications
合作研究:CMOS X:用于新兴计算应用的 CMOS 上大规模集成 FeFET 的设备到架构联合开发和演示
- 批准号:
2318808 - 财政年份:2023
- 资助金额:
$ 42.82万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
- 批准号:
2212240 - 财政年份:2022
- 资助金额:
$ 42.82万 - 项目类别:
Standard Grant
相似国自然基金
面向5G通信的超高频FBAR耗散机理和耗散稳定性研究
- 批准号:12302200
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
宽运行范围超高频逆变系统架构拓扑与调控策略研究
- 批准号:52377175
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
超高频同步整流DC-DC变换器效率优化关键技术研究
- 批准号:62301375
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
- 批准号:82302939
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
强震动环境下10-100Hz超高频GNSS误差精细建模及监测应用研究
- 批准号:42274025
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 42.82万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 42.82万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 42.82万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 42.82万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 42.82万 - 项目类别:
Standard Grant