Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory

合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习

基本信息

  • 批准号:
    2344819
  • 负责人:
  • 金额:
    $ 26.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2027-09-30
  • 项目状态:
    未结题

项目摘要

The field of artificial intelligence (AI) has recently made significant strides, with notable advancements such as large language models like ChatGPT taking the world by storm. However, these breakthroughs would not have been possible without the availability of powerful computing hardware, such as graphics processing units (GPUs). Such hardware has benefited from several decades of technology scaling following Moore's law. As technology approaches its physical limits and AI models require exponentially increasing hardware resources, including computation and storage, alternative computing paradigms with superior energy efficiency and performance are necessary for a sustainable future. Compute-in-memory is one promising approach where computations are directly performed in memory units, eliminating most data movements, a key bottleneck in conventional computers. However, to best exploit the compute-in-memory for acceleration of AI models on the scale of giga-byte to tera-byte levels, it is critical to have high capacity, energy-efficient, and high performance memory technology to fit the models. NAND memory is a form of erasable programmable read-only memory that takes its name from the not-and (NAND) logic gate. The proposed research aims to develop ferroelectric vertical NAND memory to meet these demands and at the same time train students for developing a future workforce for the semiconductor industry.Vertical NAND memory offers the highest density by increasing the number of stacked layers vertically. However, conventional vertical NAND memory based on floating gate or charge trap flash suffers from poor performance, including high write voltage, low speed, and poor endurance, despite their large capacity. To address these issues, this research proposes the development of a vertical NAND flash alternative: the vertical NAND ferroelectric field-effect transistor (FeFET), which achieves high density and high performance simultaneously. By leveraging the recently discovered ferroelectric HfO2, superior performance can be achieved as ferroelectric programming is driven by an applied electric field, which can be energy-efficient and fast. The project aims to design and evaluate vertical NAND FeFET-based compute-in-memory accelerators from devices to architectures, with innovations such as novel cell designs to achieve multi-level cell and variation suppression, vertical NAND array disturb mitigation with a novel array structure, and mapping and benchmarking of various important information processing tasks to the vertical NAND FeFET array. Additionally, this research includes workforce training activities such as lectures and hands-on experience offered to K-12 students and teachers to promote excitement and attract them to the talent pipeline for the semiconductor industry. The proposed research will recruit graduate and undergraduate students via the Research Experience for Undergraduates (REU) program from underrepresented groups, and the knowledge acquired in this project will be distributed through curriculum development and online sharing repositories.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能 (AI) 领域最近取得了重大进展,诸如 ChatGPT 等大型语言模型风靡全球等显着进步。然而,如果没有强大的计算硬件(例如图形处理单元(GPU)),这些突破就不可能实现。此类硬件受益于几十年来遵循摩尔定律的技术扩展。随着技术接近其物理极限,人工智能模型需要呈指数级增长的硬件资源,包括计算和存储,具有卓越能源效率和性能的替代计算范式对于可持续的未来是必要的。内存计算是一种很有前途的方法,计算直接在内存单元中执行,消除了大多数数据移动,这是传统计算机的一个关键瓶颈。然而,为了最好地利用内存计算来加速千兆字节到太字节级别的人工智能模型,拥有大容量、高能效和高性能的内存技术来适应模型至关重要。 NAND 存储器是一种可擦除可编程只读存储器,其名称源自非与 (NAND) 逻辑门。拟议的研究旨在开发铁电垂直 NAND 存储器来满足这些需求,同时培训学生为半导体行业培养未来的劳动力。垂直 NAND 存储器通过增加垂直堆叠层数来提供最高密度。然而,基于浮栅或电荷捕获闪存的传统垂直NAND存储器尽管容量大,但性能较差,包括写入电压高、速度低、耐用性差。为了解决这些问题,本研究提出开发垂直 NAND 闪存替代方案:垂直 NAND 铁电场效应晶体管 (FeFET),它可以同时实现高密度和高性能。通过利用最近发现的铁电 HfO2,由于铁电编程由外加电场驱动,因此可以实现卓越的性能,既节能又快速。该项目旨在设计和评估从设备到架构的基于垂直 NAND FeFET 的内存计算加速器,并采用新颖的单元设计来实现多级单元和变化抑制、通过新颖的阵列结构减轻垂直 NAND 阵列干扰等创新,以及将各种重要信息处理任务映射到垂直 NAND FeFET 阵列并进行基准测试。此外,这项研究还包括为 K-12 学生和教师提供讲座和实践经验等劳动力培训活动,以激发他们的兴趣并吸引他们加入半导体行业的人才队伍。拟议的研究将通过本科生研究经验(REU)计划从代表性不足的群体中招募研究生和本科生,该项目中获得的知识将通过课程开发和在线共享存储库进行分发。该奖项反映了 NSF 的法定使命,并已被通过使用基金会的智力优点和更广泛的影响审查标准进行评估,认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kai Ni其他文献

Carbon Nanotube SRAM in 5-nm Technology Node Design, Optimization, and Performance Evaluation—Part I: CNFET Transistor Optimization
5 纳米技术节点中的碳纳米管 SRAM 设计、优化和性能评估 — 第一部分:CNFET 晶体管优化
Low-Power and Scalable BEOL-Compatible IGZO TFT eDRAM-Based Charge-Domain Computing
High Performance Indium-Tin-Oxide Schottky Diodes for Terahertz Band Operation.
用于太赫兹频段运行的高性能氧化铟锡肖特基二极管。
  • DOI:
    10.1021/acs.nanolett.4c01172
  • 发表时间:
    2024-06-05
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Kaizhen Han;Yuye Kang;Yi;Chaoming Wu;Chengkuan Wang;Long Liu;Gong Zhang;Yue Chen;Kai Ni;Gengchiau Liang;Xiao
  • 通讯作者:
    Xiao
Modeling and Investigating Total Ionizing Dose Impact on FeFET
建模和研究总电离剂量对 FeFET 的影响
Ferroelectric compute-in-memory annealer for combinatorial optimization problems
用于组合优化问题的铁电内存计算退火器
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Xunzhao Yin;Yu Qian;Alptekin Vardar;Marcel Günther;F. Müller;N. Laleni;Zijian Zhao;Zhouhang Jiang;Zhiguo Shi;Yiyu Shi;Xiao Gong;Cheng Zhuo;Thomas Kämpfe;Kai Ni
  • 通讯作者:
    Kai Ni

Kai Ni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kai Ni', 18)}}的其他基金

CAREER: High-Performance Ferroelectric Memory for In-Memory Computing
职业:用于内存计算的高性能铁电存储器
  • 批准号:
    2346953
  • 财政年份:
    2023
  • 资助金额:
    $ 26.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
  • 批准号:
    2312884
  • 财政年份:
    2023
  • 资助金额:
    $ 26.8万
  • 项目类别:
    Standard Grant
Collaborative Research: CMOS+X: A Device-to-Architecture Co-development and Demonstration of Large-scale Integration of FeFET on CMOS for Emerging Computing Applications
合作研究:CMOS X:用于新兴计算应用的 CMOS 上大规模集成 FeFET 的设备到架构联合开发和演示
  • 批准号:
    2404874
  • 财政年份:
    2023
  • 资助金额:
    $ 26.8万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
  • 批准号:
    2347024
  • 财政年份:
    2023
  • 资助金额:
    $ 26.8万
  • 项目类别:
    Standard Grant
CAREER: High-Performance Ferroelectric Memory for In-Memory Computing
职业:用于内存计算的高性能铁电存储器
  • 批准号:
    2239284
  • 财政年份:
    2023
  • 资助金额:
    $ 26.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: CMOS+X: A Device-to-Architecture Co-development and Demonstration of Large-scale Integration of FeFET on CMOS for Emerging Computing Applications
合作研究:CMOS X:用于新兴计算应用的 CMOS 上大规模集成 FeFET 的设备到架构联合开发和演示
  • 批准号:
    2318808
  • 财政年份:
    2023
  • 资助金额:
    $ 26.8万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
  • 批准号:
    2212240
  • 财政年份:
    2022
  • 资助金额:
    $ 26.8万
  • 项目类别:
    Standard Grant

相似国自然基金

离子辐照精准调控SnS2栅极敏感材料缺陷密度增强碳基FET型气体传感器性能的研究
  • 批准号:
    12305330
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
二维铁电MOS场效应管的存算逻辑建模及其代数系统研究
  • 批准号:
    62304115
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于离子敏感场效应管和微纳孔道的三维电荷传感系统研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
半导体敏化栅极场效应管室温氢气传感器性能与机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
GaN基芯片场效应管异质结亚十纳米空间热输运机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329908
  • 财政年份:
    2024
  • 资助金额:
    $ 26.8万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
  • 批准号:
    2403560
  • 财政年份:
    2024
  • 资助金额:
    $ 26.8万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
  • 批准号:
    2403559
  • 财政年份:
    2024
  • 资助金额:
    $ 26.8万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329909
  • 财政年份:
    2024
  • 资助金额:
    $ 26.8万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Theoretical Foundations of Quantum Pseudorandom Primitives
合作研究:FET:小型:量子伪随机原语的理论基础
  • 批准号:
    2329938
  • 财政年份:
    2023
  • 资助金额:
    $ 26.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了