Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation

合作研究:用于模拟量子模拟的莫尔激子极化

基本信息

  • 批准号:
    2344659
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-04-01 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

Understanding and designing how light interacts with materials play an important role in semiconductor technology, with applications in our daily lives ranging from solar energy harvesting and light-emitting devices to high-speed internet and high-performance computing. Engineering and enhancing this light-matter interaction are critical for advancing new technologies and even the new field of quantum information science and engineering (QISE). One strategy is to couple exciton, an optically excited electron and hole pair, to a nanoscale cavity and form exciton-polariton (EP), which is a half-material and half-light hybrid that inherits the advantages of both worlds. The photon nature allows us to manipulate the EP via optical engineering, and the exciton nature enables strong interaction. The light-matter interaction can be further enhanced in atomically thin semiconductors and engineered by stacking two of these atomic sheets together and precisely controlling their twist angle, forming a semiconducting moiré superlattice. In this proposal, we will design a systematic way to couple the nano-cavities with the semiconducting moiré superlattice to enhance the light-matter interaction to an unprecedented level, in which the device function can be drastically altered even by a single photon. This level of strong light-matter interaction can be utilized to implement photonic quantum simulations, a way to simulate new materials whose properties arise from complicated interactions between electrons. Strategically aligned with the National Quantum Initiative and Semiconductor Technology Initiative, this proposal will develop new course materials to train students for careers in high-demand, cutting-edge semiconductor, optical science, and QISE fields. Hands-on summer workshops on optics and nanofabrication for K-12 and under-represented minority students will be organized. The results from this proposal will be disseminated to both the scientific community and the general public to raise national awareness of the importance of QISE and semiconductor technology innovations.This proposal aims to develop a quantum nonlinear optical device platform to understand and engineer light-matter interactions in two-dimensional (2D) materials for analog quantum simulations. The project will accomplish a hybrid device that couples the robust excitons in a semiconducting moiré superlattice to nanophotonic resonators, forming a quasiparticle known as moiré exciton-polariton (EP), a half-material and half-light hybrid. The exciton in the semiconducting moiré superlattices formed by atomically thin transition metal dichalcogenides (TMDCs) can be tailored with even stronger interaction thanks to the electronic and excitonic flatbands. Therefore, the moiré superlattice hosts fascinating correlated insulating electronic states, and the exciton resonances are modified due to the moiré potential confinement. Strong coupling of the moiré excitons with the ultra-small mode-volume nanophotonic resonators and resonator arrays will lead to a unique moiré-EP platform for studying correlated excitonic physics and realizing nonlinear phonon-phonon interactions down to the single-photon level, paving the way to transformative quantum nano-optoelectronics such as analog quantum simulations. The proposed research will also transform the current state of power-efficient optical information processing and quantum optoelectronics. This proposal will develop education components well integrated with the proposed research to train students for the future workforce in semiconductor, optical science, and QISE fields. This proposal will develop learning opportunities on optics and nanofabrication for K-12 and under-represented minority students. The results from this proposal will be disseminated to a wide scientific audience and shared with the general public.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
了解和设计光与材料的相互作用在半导体中发挥着重要作用,其应用范围从太阳能收集和发光设备到高速互联网和高性能计算工程,并增强这种光与物质的相互作用。对于推进新技术甚至量子信息科学与工程(QISE)的新领域至关重要,一种策略是将激子(光激发电子和空穴对)耦合到纳米级空腔并形成激子极化子(EP),是一个光子性质使我们能够通过光学工程操纵电子电势,而激子性质可以实现强相互作用,在原子薄半导体中可以进一步增强光与物质的相互作用,并可以通过将两个原子片堆叠在一起并精确控制它们的扭转角来进行设计。 ,形成半导体莫尔超晶格在这个提案中,我们将设计一种系统的方法将纳米腔与半导体耦合。莫尔超晶格将光与物质的相互作用增强到前所未有的水平,即使单个光子也可以显着改变器件的功能,这种强光与物质的相互作用水平可用于实现光子量子模拟,这是一种模拟方法。该提案在战略上与国家量子计划和半导体技术计划保持一致,将开发新的课程材料,以培训学生从事高需求、尖端半导体、光学科学和电子科学领域的职业。将为 K-12 和代表性不足的少数族裔学生组织光学和纳米制造实践夏季研讨会。该提案的结果将向科学界和公众传播,以提高全国对​​其重要性的认识。 QISE 和半导体技术创新。该提案旨在开发一个量子非线性光学器件平台,以理解和设计二维 (2D) 材料中的光与物质相互作用,以进行模拟量子模拟。该项目将实现一种耦合鲁棒性的混合器件。半导体莫尔超晶格中的激子到纳米光子谐振器,形成一种称为莫尔激子极化子(EP)的准粒子,这是一种半材料和半光混合体。半导体莫尔超晶格中的激子由原子级薄的过渡金属二硫化物(TMDC)形成。由于电子平带和激子平带,可以定制具有更强的相互作用因此,莫尔条纹。超晶格具有令人着迷的相关绝缘电子态,并且由于莫尔势限制,激子共振被修改,莫尔激子与超小模式体积纳米光子谐振器和谐振器阵列的强耦合将产生独特的莫尔-EP平台。研究相关激子物理并实现单光子水平的非线性声子-声子相互作用,为变革性量子纳米光电子学铺平道路拟议的研究还将改变节能光学信息处理和量子光电子学的现状,该提案将开发与拟议研究完美结合的教育组件,以培训学生成为半导体、光学科学、该提案将为 K-12 和代表性不足的少数族裔学生提供光学和纳米制造的学习机会。该提案的结果将向广大科学受众传播并与公众分享。该奖项由 NSF 颁发。法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arka Majumdar其他文献

Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator.
超低功率光纤耦合砷化镓光子晶体腔电光调制器。
  • DOI:
    10.1364/oe.19.007530
  • 发表时间:
    2011-04-11
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    G. Shambat;B. Ellis;M. Mayer;Arka Majumdar;E. E. Haller;J. Vučković
  • 通讯作者:
    J. Vučković
Boundary scattering tomography of the Bose Hubbard model on general graphs
一般图上 Bose Hubbard 模型的边界散射断层扫描
  • DOI:
  • 发表时间:
    2023-10-22
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abhi Saxena;Erfan Abbasgholinejad;Arka Majumdar;Rahul Trivedi
  • 通讯作者:
    Rahul Trivedi
Electrohydrodynamic Printing‐Based Heterointegration of Quantum Dots on Suspended Nanophotonic Cavities
电流体动力印刷——基于悬浮纳米光子腔上量子点的异质集成
  • DOI:
    10.1002/admt.202301921
  • 发表时间:
    2024-03-30
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Gregory G. Guymon;David Sharp;Theodore A. Cohen;Stephen L. Gibbs;Arnab Manna;Eden Tzanetopoulos;D. Gamelin;Arka Majumdar;J. D. MacKenzie
  • 通讯作者:
    J. D. MacKenzie
Full color Imaging with Large-Aperture Meta-Optics
使用大孔径超光学器件进行全彩色成像
Roadmap for Optical Metasurfaces
光学超表面路线图
  • DOI:
    10.1021/acsphotonics.3c00457
  • 发表时间:
    2024-02-27
  • 期刊:
  • 影响因子:
    7
  • 作者:
    A. Kuznetsov;M. L. Brongersma;J. Yao;M. Chen;Uriel Levy;Din Ping Tsai;N. Zheludev;A. Faraon;A. Arbabi;Nanfang Yu;Debashis Ch;a;a;Kenneth B Crozier;A. Kildishev;Hao Wang;Joel K W Yang;Jason G. Valentine;P. Genevet;Jonathan A. Fan;Owen D. Miller;Arka Majumdar;Johannes E. Fröch;David Brady;Felix Heide;Ashok Veeraraghavan;N. Engheta;A. Alù;A. Polman;H. A. Atwater;Prachi Thureja;R. Paniagua‐Domínguez;S. Ha;A. I. Barreda;Jon A. Schuller;I. Staude;G. Grinblat;Yuri S. Kivshar;Samuel Peana;S. Yelin;Ale;er Senichev;er;V. Shalaev;S. Saha;A. Boltasseva;J. Rho;D. Oh;Joo;Junghyun Park;Robert Devlin;R. Pala
  • 通讯作者:
    R. Pala

Arka Majumdar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arka Majumdar', 18)}}的其他基金

Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
  • 批准号:
    2329089
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
  • 批准号:
    2329089
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
EFRI BRAID: Optical Neural Co-Processors for Predictive and Adaptive Brain Restoration and Augmentation
EFRI BRAID:用于预测性和适应性大脑恢复和增强的光学神经协处理器
  • 批准号:
    2223495
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
OP: Quantum Light Matter Interaction with van der Waals Exciton-Polaritons
OP:量子光物质与范德华激子极化子的相互作用
  • 批准号:
    2103673
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
OP: Quantum Light Matter Interaction with van der Waals Exciton-Polaritons
OP:量子光物质与范德华激子极化子的相互作用
  • 批准号:
    2103673
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
GCR: Meta-Optical Angioscopes for Image-Guided Therapies in Previously Inaccessible Locations
GCR:元光学血管镜,用于在以前无法到达的位置进行图像引导治疗
  • 批准号:
    2120774
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
  • 批准号:
    2127235
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
OP: Spatial Light Modulation using Reconfigurable Phase Change Material Metasurfaces
OP:使用可重构相变材料超表面进行空间光调制
  • 批准号:
    2003509
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: Van der Waals material integrated ultra-low power nanophotonics
职业:范德华材料集成超低功耗纳米光子学
  • 批准号:
    1845009
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
QII-TAQS: Strongly Interacting Photons in Coupled Cavity Arrays: A Platform for Quantum Many-Body Simulation
QII-TAQS:耦合腔阵列中的强相互作用光子:量子多体模拟平台
  • 批准号:
    1936100
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant

相似国自然基金

二维半导体莫尔条纹中的晶格重构及莫尔激子调控研究
  • 批准号:
    12374178
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
moire超晶格诱导准二维幻数团簇生长机理的理论研究
  • 批准号:
    12274165
  • 批准年份:
    2022
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
Moire系统平带中的拓扑及电子关联特性研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目
过渡金属纳米团簇在石墨烯莫尔条纹上的可控生长及其催化性能的理论研究
  • 批准号:
    21905019
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
面向高动态纳米测量的光栅莫尔条纹信号误差机理及实时补偿研究
  • 批准号:
    51405097
  • 批准年份:
    2014
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
  • 批准号:
    2344658
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: The Search for Novel Superconductors in Moire Flat Bands
DMREF:合作研究:在莫尔平带中寻找新型超导体
  • 批准号:
    1922165
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: The Search for Novel Superconductors in Moire Flat Bands
DMREF:合作研究:在莫尔平带中寻找新型超导体
  • 批准号:
    1922172
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
An innovative tool for assessment of gait dysfunction in the clinical setting
用于评估临床环境中步态功能障碍的创新工具
  • 批准号:
    8965781
  • 财政年份:
    2011
  • 资助金额:
    $ 25万
  • 项目类别:
An innovative tool for assessment of gait dysfunction in the clinical setting
用于评估临床环境中步态功能障碍的创新工具
  • 批准号:
    9146269
  • 财政年份:
    2011
  • 资助金额:
    $ 25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了